Lark - An LALR(2) Parser Generator
With Backtracking

J. Grosch

DR. JOSEF GROSCH

COCOLAB - DATENVERARBEITUNG

GERMANY

Cocktall

Toolbox for Compiler Construction

Lark - An LALR(2) Parser Generator With Backtracking

Josef Grosch

July 15, 2005

Document No. 32

Copyright © 2005 DrJosef Grosch

Dr. Josef Grosch
CoColLab - Dateverarbeitung
Breslauer Stré4c
76139 Karlsruhe
Germany

Phone: +49-721-91537544
Fax: +49-721-91537543
Email: grosch@cocolab.com

Lark 1

1. Introduction

Lark is a parser generator for LALR(2) and LR(1) grammars. With its backtracking facility it is
even able to generate parsers for non-LR(k) languages. It is compatible with its predetressor
parser generatdralr [GrV]. The parser generatdrark offers the following features:

- generates highly efficient parsers

- provides automatic error reporting, error regy, and error repair

- generates quickly detailed information about LR conflicts

- processes LALR(2) and LR(1) grammars

- supports backtracking for parsing non-LR(k) languages

- offers semantic predicates for the control of parsing by conditions

- supports named attributes as well as the $n notation

- provides a trace of parsing steps during run-time

- handles the bnf operator | which makes preprocessing with bnf rarely necessary

The parser generathark was ariginally developed with the aim tove@rcome the restrictions
of LALR(1) grammars by the construction of an LR(k) parser generettername of the program
is derved from this original goal. Hoever, like ahers, we experienced thepgnential compbety
of LR(k) parser generation. Therefore we abandoned the original goal and adopted a method ¢
usercontrolled backtracking inspired by [Mer93]. This metha#roomes een the restriction of
LR(k) grammars of having a bounded lookahead of at mostdnsokecause it allows unbounded
lookahead. Of course, backtracking is not for frkeslows down parsing but only in those parts of
a gammar where backtracking is used. Without backtracking, the parsers generhtell dme as
highly efficient as parsers generatedlayr [Gro88]. Thereason is thadtark uses an extendeaw
sion of the appneed parser skeleton dfalr [Gro90]. The method for the computation of the looka-
head sets is a combination of the algorithms published in [KrM81, PCC85].

In this paragraph we describe further features of the parser genEvatgrgrammar rule may
be associated with a semantic action consisting of arbitrary statements written in the target lar
guage. Whener a grammar rule is recognized by the generated pattserassociated semantic
action is e&ecuted. A mechanism for S-attribution (synthesized aitei) is provided to ale com-
munication between the semantic actions. In case of LR conflictsatd@ritrees are printed that
ease the location of the problem. The conflict can be resolved by specifying precedence and assoc
tivity for terminals and rules or by the use of predicates. There are syntactic predicates and sema
tic predicates which are only used in case of LR conflicts. A rule with a semantic predicate is recog
nized only if the predicate yields true during run timkerule with a syntactic predicate is recog-
nized only if the lookahead teks conform to the predicate. The most comfortable form of a syn-
tactic predicate is backtracking where an arbitrary number of lookahead tokens is parsed in order 1
check whether it can be dezd from a gven nonterminal. Syntactierrors are handled fully auto-
matic by the generated parsers including error reporting, errarergcand error repair The gener
ated parsers are tablead. Theso-called comb-ector technique is used to compress the parse
tables. Theparse stack is implemented as a flexible array in orderoid averflows. Rarsers can
be generated in the languages C, C+¥a Jdodula-2, Ada, and Bél. Parsers generated lark
are two to three times faster tharecc [Joh75] generated ones. Fheeach a speed of twmillion
lines per minute on a 8RC station ELC excluding the time for scanning. The size of the parsers
is slightly increased in comparison Yecc because of the comfortable error rea@y and because
Lark prefers to minimize run time rather than program size.

Lark 2

Besides the input language described in this manual, there is a second possibility which can k&
used to describe grammars fark. This alternate possibility is described in the document entitled
"Preprocessors" [Groa]. The use of the language defined in the current manual works .perfectly
However, in comparison to the alternate method, it is re&yilow levd. Therefore we recommend
to use the language described in "Preprocessors"”. It offers the following advantages:

- The syntax is the same as for the tcad$[Grob] andag [Groc] of the Cocktail Toolbox for
Compiler Construction [GrE90Q].

- It alows for the automatic desation of most of a scanner specification from a parser specifica-
tion.

- The coding of tokens is done automatically and kept consistent with the scanner specification.

- The S-attribution or attribute grammar is chetkfor completeness and whether it obeys the
SAG property.

- Declarations for the typ#ParsAttributeand the procedurErrorAttribute are dened automati-
cally from the attribute declarations.

- The grammar and the semantic actions might be separatedvietal seodules.

- One disadantage has to be mentioned: Predicates and backtracking are not yet supported by tt
alternatve input language.

The rest of this manual isganized as follows: Section 2 explains the input language of the
parser generator that is used to describe gramneaation 3 discusses the classes of LALR(1) and
LR(1) grammars. Section 4 deals with LR conflicts and ambiguous gram®ecton 5 gplains
the information generated about LR conflicBection 6 describes the optional listings of terminals,
nonterminals, and grammar rules as well as the readable output of the generated parsing automat
Section 7 describes the interfaces of the generated paBsaton 8 discusses the error nesg of
the generated parserSection 9 describes the trace of parsing actions that can be requested from &
generated parseiSection 10 contains the manual page of the parser generator that summarizes al
possible optionsAppendix 1 summarizes the syntax of the input language. The Appendices 2 to 5
present examples of parser specifications.

2. LanguageDescription

A parser generator tak as input a language description and it produces as output a Aguaeser

is a procedure or a program module for analyzingrengnput according to the language descrip-
tion. A language is described camiently by a contet-free grammar A complete language
description suitable as input foark is divided into the following parts which can bea in any
order except for the grammar part which has to be last:

names for scanner and parser modules

target code sections

specification of the tokens

specification of precedence and associativity for operators
specification of start symbols

specification of the grammar

The part specifying the grammar is mandatory - all other parts are optional. The following sections
discuss these parts as well as the lexicaledions. Appendixl summarizes the syntax of the
input language using a grammatr.

Lark 3

2.1. LexicalConventions

A language description for the parser generasok can be written in free format. It consists pri-
marily of identifiers, kywords, numbers, strings, delimiters, target-code, and comments.

An identifier is a sequence of letters, digits, and underscore characters ’_’. The sequence must stz
with a letter or an underscore character ’_'. Upper and lower case letters are distinguished. An ider
tifier may be preceded by a backslash character '\’ e. g. in case of conflicteywibrds. Such a
construct is treated as an identifier whose name consists of the characters without the backsla
characterldentifiers denote terminal and nonterminal symbols.

Factor Term_2 \BEGIN
The following lkeywords are reserved and may not be used for identifiers:

BEGIN CLOSE EXPORT GLOBAL LEFT
LOCAL NONE OPER PARSER PREC
RIGHT RULE SCANNER START TOKEN

A number is a sequence of digits. Numbers are used to encode the tokens. The number zero 0’
reserved as code for the end-of-file token.

1 27

A string is a sequence of characters enclosed either in single quotes ™" or double quotes ™. If the
delimiting quote character is to be included within the string it has to be written twice. Strings
denote terminal symbols or teks. V¢ will use the terms token and terminal as synonyms in this
manual.

= " "BEGIN"

The following special characters are used as delimiters:

= : . | ? - [] { }

So-called taget-code actions or semantic actions are arbitrary declarations or statements written ir
the taget language and enclosed either in curly brackets '{" and '} or in edged brackets [and ']’
The characters '{" and '} or [and ']’ can be used within the actions as long as dres either
properly nested or contained in strings or in character const@ttgsrwise thg haveto be escaped

by a backslash character '\'. The escape character '\’ has to be escaped by itself if it is used outsic
of strings or character constants: '\\'. In general, a backslash character \' can be used to gscape a
character outside of strings or character constants. The escapetions are disabled within those
tokens and the tokens are accepted unchangked.actions are copied more or less unchecked and
unchanged to the generated output. Syntactic errors are detected during compilation.

{1intx}
{ p rintf ("An"); }
[p rintf ("named and $n-attributes: %d %d", $name, $2);]

The parser generator does not Wwnabout the syntax of the @&t language except for strings.
Strings are checked for correct syntax in statements as well as in comments, because the tool dc
not distinguish between between statements and comments. This has the advantage that strings
copied unchanged to the generated outputveder, it has the disadvantage that single and double

Lark 4

quotes hee © gopear in pairs in comment lines contained in semantic actions. Unpaired quotes are
reported as incorrect strings.

{ p rintf ("hello \" and "\n"); /* it"s time to "go home" */ } (* correct *)
{ p rintf ("hello \" and "\n"); /* it's time to "go
home" * } (* e rroneous *)

There are tw kinds of comments: First, a sequence of arbitrary characters can be enclosed in '(*
and ’*)". This kind of comment can be nested to arbitrary depth. Second, a sequence of arbitran
characters can be enclosed in ’/* and "*/". This kind of comment may not be nested. Both kinds of
comments may be used anywhere between lexical elements.

(* first kind of comment *)
(* a (* nested *) comment *)
/* second kind of comment */

2.2. Namedor Scanner and Parser
A grammar may optionally be headed by names for the files and modules to be generated:

SCANNER Identifier PARSER Identifier

The first identifier specifies the module name of the scanner to be used by theTparsecond
identifier specifies a name which is used towdetie names of the parsing module, the parsing rou-
tine, etc. If the names are missingythiefault to ScannerandParser. In the following we refer to
these names by <Scanner> and <Parser>.

If the target language is\la these names may include a package nahte scanner may be in a
different package to the parser as in this example:

SCANNER mydomain.scanners.JavaScanner
PARSER mydomain.parsers.JavaParser

Here the parser name JavaScannernd the generated class will include a package declaration
placing it inmydomain.parsersThe scanner is @abys referred to by its fully qualified name so
there is no need to add an import statement.

2.3. Target Code Sections

A grammar may contain geral sections containintarget code Target code is code written in the
target language. It is copied unchecked and unchanged to certain places in the generated modu
Every section is introduced by a distin@yword. Themeaning of the different sections is as fol-
lows:

IMPORT: declaration of external modules used by the generated parser.

EXPORT: declarations visible to users of the generated parser.

GLOBAL: declarationgo be included in the implementation part or body at glohal.le
LOCAL: declarationgo be included in the parsing procedure.

BEGIN: statement# initialize the declared data structures.

CLOSE: statement® finalize the declared data structures.

Lark 5

The &act details vary according to the gentions of the target language, and will be discussed
later.

Example in C or C++:

EXPORT { typedef int MyType; extern MyType Sum; }
GLOBAL {# include "Idents.h"
MyType Sum; }
BEGIN { Sum=0;}
CLOSE { printf ("%d", Sum); }

Example in Modula-2:

EXPORT { TYPE MyType = INTEGER; VAR Sum: MyType; }
GLOBAL { FROM Idents IMPORT tldent; }

BEGIN { Sum:=0;}

CLOSE { Writel (Sum, 0); }

Example in Ada:

IMPORT { with Idents; use ldents; }

GLOBAL { type MyType is Integer; Sum: MyType; }
BEGIN { Sum:=0;}

CLOSE { Put (Sum);}

Example in Eiffel:

EXPORT { Sum, }

GLOBAL { Sum: INTEGER; }
BEGIN { Sum:=0;}

CLOSE { io.output.putint (Sum); }

Example in Jea

EXPORT { public int sum; }
BEGIN { sum:=0;}
CLOSE { System.out.println (Sum); }

If a GLOBAL section is not specified then it defaults to the following which provides a minimal
definition for the type tParsAttribute:

C typedef struct { tScanAttribute Scan; } tParsAttribute;

Modula2 TYPE tParsAttribute = RECORD Scan: Scanner.tScanAttribute; END;
Ada type tParsAttribute is record Scan: Scanner.tScanAttribute; end record,;
Java # define yyParsAttribute java.lang.Object

If an EXPOR section is not specified then it defaults to the following:
C++ typedef struct { tScanAttribute Scan; } <Parser>_tParsAttribute;

2.4. Specificatiorof Terminals

The terminals or tadns of a grammar may be declared by listing them afterejpeokd TOKEN.
The tokens can be denoted by strings or identifiers. Optioaallgteger can be gen to be sed as

Lark 6

internal representation. Missing codes are added automatically by takingvést lmused inggers.
The codes must be greater than zero. The code zero ‘0' iseddenthe end-of-file token. Unde-
clared tokens are allowed. Thare declared implicitly and reported by a warning message. éntok
Is undeclared if it is not declared aseakand it is either denoted by a string or by an identifier
which is not used as a nonterminal.

Example:
TOKEN
wp _ 4
ident = 1
'BEGIN’
END =3

The token .=’ will be coded by 2 and 'BEGIN’ by 5.

The declaration of a token can optionally be followed by a @sewand an external represen-
tation. This information is used by the error ne®y. If tokens are to be inserted during error repair
then tokens are selected according to minimal costs. Cost vale® lie geater than zero. Miss-
ing cost values default to 10. Arternal representation is specified by a string. This string will be
used for error messages. If no external representation is specified then the identifier or the strir
denoting the token will be used. Appendix 1 contains the exact syntax for the declaration of tokens

Example:

TOKEN
identifier = 1, 20, "name" /* cost =20 */
number = 2, 5, 0’ [* cost = 5 */
dummy 3, ™ [* cost=10%*

2.5. Precedence and Associativity for Operators

Sometimes grammars are ambiguous and then it is not possible to generate a parser without ad
tional information. Ambiguous grammars can be turned into unambiguous onesyircasas by

the additional specification of precedence and assatydir operators. Operators are tokens used

in expressions. Th&eyword PREC may be followed by groups of tokens. Every group has to be
introduced by one of theegwords LEFT RIGHT, or NONE. The groups express increasingele

of precedence. LEERIGHT, and NONE express left associaty, right associatiity, and no asso-
ciativity.

Example:

PREC
NONE =’
LEFT '+ -
LEFT =
RIGHT ™*
LEFT UNARY_MINUS

The precedence and associativity of operators is pabdpago grammar rules or right-hand sides. A
right-hand side recegs the precedence and associativity of its right-most operitibrexists. A
right-hand side can bewgh the explicit precedence and associativity of an operator by adding a so-
called PREC clause. This is of interest if there is either no operator in the right-hand side or in orde

Lark 7

to overwrite the implicit precedence and associativity of an operator.

Example:

expression ; -’ expression PREC UNARY_MINUS . /* overwrite binary =" */
expression : expression expression PREC '+’ . I* no o peratorinrule *

2.6. StartSymbols

One or more nonterminal symbols can be defined to act as sosalfedymbols The names of
these nonterminals are listed after tlegvkord START. If this START clause is missing then the
nonterminal on the left-hand side of the first grammar rule is implicitly defined as start syirhbol.
generated parser checks its input with respect to a certain start symbol. It checks whether the inp
can be devied from the start symbol gén as agument.

Example:

START program statement expression

2.7. Grammar Rules

The core of a language description is a context-free gramhggammar consists of a set of rules.
Every rule defines the possible structure of a language construct such as statemprgssroa.
The following example specifies a trivial programming language.

Example:
RULE

statement : 'WHILE’ expression 'DO’ statement ’;’
| ' IF" expression 'THEN' statement’;’
| i dentifier =" expression ’;

expression : term
| e xpression '+’ term

term . factor
| t erm ' factor

factor : number
| i dentifier
| * (expression’)’

A grammar rule is introduced by a left-hand side and a colon ’.’. It is terminated by a dot .
The left-hand side has to be a nonterminal which is defined by the rule. Nonterminals are denote
by identifiers. An arbitrary number of rules with the same left-hand side may be spettied.
order of the rules has no meaning except in the case of LR conflicts (see section 4).ARio ST
clause is specified then the nonterminal on the left-hand side of the first rule serves as start symb
of the grammar.

For the definition of nonterminals we use nonterminals itself as well as termifalsinals
are the basic symbols of a language.yTtanstitute the input of the parser to be generatednif
nals are denoted either by identifiers or stringstule can specify seral right-hand sides sepa-
rated by a bar character ’|'. The nontermistaitementrom the abwe example could alternately

Lark 8

be defined in the following style with the same meaning:

Example:

RULE

statement : 'WHILE’ expression ‘DO’ statement ’;’ .
statement : 'IF" expression 'THEN' statement ;" .
statement : identifier ;=" expression ’;’ .

2.8. SemanticActions

Semantic actions sexuvo perform syntax-directed translation. This alkbfor example the genera-

tion of an intermediate representation such as a syntax tree or of a sequential intermediate langua
A semantic action is an arbitrary sequence of statements written in the implementation languag:
which is enclosed in curly braets '{" and '}. One or more semantic actions may be inserted in the
right-hand side of a grammar rule. This first form of a semantic action is more precisely called a
conditionalsemantic action. It is termed conditional because by default it isxeoited when the
parser does backtracking (trial mode). There is a second form of semantic actions which ar
enclosed in edged bragts ’[' and ']'. This form is calledunconditionalbecause these semantic
actions are xecuted by default during backtracking (trial mode) as well as during regular parsing
(standard mode). Theecution of semantic actions can be additionally controlled by an action flag
and so-called selection masks. The section about "Reparsing” describes the Hetadenerated
parser analyzes its input from left to right according to the specified rules. Véghangmantic

action is encountered in a rule its statements>aeued.

The folloving grammar completely specifies the translation of simple arithmgtiessions
into a postfix form for a stack machine.

RULE
expression : term
| e xpression '+’ term { printf ("ADD\n"); }
| e xpression ’-’ term { printf ("SUB\n"); }
term : factor
| t erm™ factor { printf ("MUL\n"); }

| t erm’/ factor { printf ("'DIVAn"); }

factor X’ { printf ("LOAD X\n"); }
|y { printf ("LOAD Y\n"); }
|z { printf ("LOAD Z\n"); }
¢

expression ')’

A parser generated from the alaogpecification would translate the expression (Y + Z) to

LOAD X
LOAD Y
LOAD Z
ADD
MUL

Due to the parsing method, semantic actions can onlyxdmeited when a complete rule has
been recognized. This would imply that semantic actious tmebe paced at the end of rules, only

Lark 9

This location for semantic actions is the recommended one. Semantic actions within the right-han
side or gen at he bginning of the right-hand side are possible. The grammar is transformed inter
nally in this case by nwing all semantic actions to the end of right-hand sides. This is done by the
introduction of nes nonterminals and merules with empty right-hand sides.

Example:

The rule X:u{A }v.
is turned into X:uYv.
and Y {A}.

Y is a rew ronterminal different from all existing nonterminals. In rare cases, a grammar may lose
its LALR(1) or LR(1) property due to the almtransformation:

Example:
X:uv]u{A }vw.

Without the semantic action { A; } this rule is LALR(1). With the semantic action and after the
above ransformation it is not LALR(1) anmore. In such a case, the rules for conflict resolution
may still lead to a working parser (see section 4).

2.9. Attributes: Definition and Computation

The parsers generated bgrk include a mechanism for a so-called S-attribution. Thisnallthe
evduation of synthesized attributes during parsing. Attributes altees associated with the nonter
minal and terminal symbols. The attrtbs allov for the communication of information among
grammar rules and from the scanner to the palstribute values are computed within semantic
actions.

Attribute storage areas are maintained for all occurrences of grammar symbols. These storac
areas are of the tygParsAttribute This type has to be defined by the user in the GLOBAdetar
code section. Usually this type is a union ariant record with one member or variant foerg
symbol that has attributes. Every member or variant may be described by a struct or record type if
symbol has seeral attributes. There mustvedys be a member callésicanof type tScanAttribute
The latter type is)gorted by the scanndduring the recognition of terminals this member is auto-
matically supplied with the information of the externaliable Attribute that is exported by the
scannertoo. This variable provides additional data (the attributes) of terminals.

Example in C or C++:

typedef union {
tScanAttribute Scan;
tTree Statement;
tValue Expression;
} t ParsAttribute;

Lark 10

Example in Modula-2:

TYPE tParsAttribute = RECORD
CASE : INTEGER OF

| 0: S can : tScanAttribute;
| 1: S tatement : tTree;

| 22 E xpression : tValue;

END;

END;

Example in Ada:

type tParsAttribute (Nonterm: Integer := 0) is record
case Nonterm is
when 0 => Scan . S canner.tScanAttribute;
when 1 => Statement it Tree;
when 2 => Expression : tValue;
when others => null;
end case;
end record;

Example in Eiffel (usually as a separate class file):

class StatementAttribute
inherit Attribute
feature

Statement : tTree
end

Example in Jea

GLOBAL {
define yyParsAttribute ParsAttribute

}

and then in a separate class file or in the EXP&#Rtion:

class ParsAttribute {
public Tree tree;

}

The values of the attnitbes are computed within semantic actions. There avgasasibilities
to denote the access of attributes: numeric access and symbolic access.

Numeric access uses the pseudo variables $1, $2, ... to denote the attributes of the right-ha
side symbols. @rminals, nonterminals as well as semantic actioms lmabe ®unted from left to
right starting at the number one in order to vietihe indexes. The pseudo variable 3 denotes the
attribute of the left-hand side. Usually $$ is computed depending on $1, $2, ... etc. Whis flo
information from the right-hand side to the left-hand side of a rule is characteristic for synthesizec
attributes.

The abee rumbering scheme is valid for semantic actions placed at the end of right-hand
sides as well as for semantic actions within a right-hand side. Semantic actions within a right-hant
side may only access attributes of preceding symbols, or in otrdswsymbols to their leftFor
semantic actions within a right-hand side a second numbering scheme can be used as well. Ti

Lark 11

indexes dart at zero for the immediately preceding symbol and decrease from right to left: $0, $-1,
$-2, ...

Symbolic access uses identifiers instead of numbers. Symbol names or short names can |
introduced by appending the character '$’ and an identifier to the terminal or nonterminal grammal
symbols. Symbolic names can also be appended to semantic actions, both, conditional or unconc
tional ones, if these are located within the right-hand side of rules. Symbolic access consists of th
character '$’ immediately followed by a symbol nhame. Again, semantic actions within a right-hand
side may only access attributes of preceding symbols or actions.

Example:
X :a$a{A;}$Nbs$d{B;}c{C;}.
The transformation of this rule results in the following "pure” rules:

=

X Act 2b1_X Act_ 4c{C;}.
_2:{A}.
4:{B;}.

X :a
1 X Ac
1 X Ac

— -

The identifiers a, N, and d are symbolic names for a, { A; } alias 1_X_Act_2,.afhdebfollowing

table lists for wery symbol and action of the rule the possibilities for accessing its uattsib
depending on whether the access is located in semantic action A, B, d@hiD. AMand B, $$ does

not refer to X Iot to the left-hand sides of the extra rules added for A and B. The attributes of the
symbol ¢ and the action B can be accessed only in the numeric style with $4 and $5 because syi
bolic names are not introduced for ¢ and B.

A B C
X - - $$
a $1,%0, %a $1,%-2,%a $1,%a
{A;} $ 3 $2, %1, $N $2, $N
b - $3,%$0,$d $3, %d
{B;} $$ $4
c - - $5
{C;} -

If the typetParsAttributeis a union or a struct type as in the examplevabthe attrilute
access may be followed by selectors for members or fields.

Example:

expression: ‘(' expression ')’ { $ $.Value = $2.Value; }.
expression: expression '+’ expression { $ $.value = $1.Value + $3.Value; }.
expression: expression$l -’ expression$r { $$.Value = $l.Value - $r.Value; } .

expression: integer { $ $.value = $1.Scan.Value; }.

2.10. Syntacticand Semantic Predicates

Grammar rules can optionally be augmented with predicates.tihékspecification of precedence

and associativity for operator ks, predicates are used only in case of LR conflicts as instructions
for conflict resolution. There are semantic predicates and syntactic predicates. All predicates ar
introduced by a question mark '?’ and yhare written at the end of the right-hand side of a

Lark 12

grammar rule.A semantic predicate consists of a condition enclosed in curly brackets '{" and '}.
A syntactic predicate consists of an identifier or a string denoting a terminal or a nonterminal gram-
mar symbol. The predicates can bgabed by using the prefix operator -’

X : X1 . ..Xn?{condition}.
X : X1 . . Xn?terminal.

X : X1 . ..Xn?nonterminal .
X : X1 . . Xn?-{condition}.
X : X1 .. Xn?-terminal.

X : X1 . . .Xn?-nonterminal .

A predicate may also appear within the right-hand side of a grammarlnlle.in the case of
semantic actions, the grammar is internally transformed by moving all predicates to the end of right
hand sides. Again, this is done by the introduction @f nenterminals and merules with empty
right-hand sides.

Example:

The rule X : X1 . .. ?predicate ... Xn .
is turned into X X1..Y..Xn.

and Y : ? p redicate .

As already mentioned, predicates are used only in case of LR conflRtsonflicts are
explained in detail in the chapters 4 andArule with a predicate is reduced only if the predicate
yields true during run timeA semantic predicate yields true if the condition yields trAesyntac-
tic predicate with a terminal yields true if the current lookaheaentadk equal to this terminalA
syntactic predicate with a nonterminal yields true if the following tokens can be correctly parsed as
this nonterminal. The operator -’ gdes the value of a predicate. In this case a rdaldvbe
reduced only if the predicate yieldslde. Theast form of a predicate constitutes trial parsing or
backtracking. Itis described further in chapter 5. The nonterminal can be chosen tftesiyn
either be the nonterminal that foNs aryway, a dfferent nonterminal from the grammar a ron-
terminal that is not used in the "pure" grammar at all. In the latter case an artificial nonterminal is
introduced just for the purpose of trial parsing.

As a first @ample we present a semantic predicate. The rule will be recognized if either there
iIs no conflict ivolved or there is a conflict and the conditioraleates to true. & assume that
IsTypedefName is a boolean function which looks up a certain property of an identifier in a symbol
table.

TYPEDEFname : IDENTIFIERSi ? { IsTypedefName ($i.Scan.Ident) } .

At a first glance it seems that predicates canxeeuéed only at the end of a rule or in other
words in combination with a reduce actioRredicates can be connected with shift actions, too.
The trick is to introduce extra nonterminals with an empty rule and to insert it into the right-hand
side of a rule where the predicate should be aubckn the following example the nonterminal
is_decl is introduced only to initiate trial parsing at the beginning of a rule.

declaration : is_decl declaration_specifier declarator ’;’ .
is_decl : ? declaration .

A third possibility for predicates is to write them within right-hand sides of rules. Thi®pse
example can be rewritten as follows:

Lark 13

declaration : ? declaration declaration_specifier declarator ’;’ .

This rule has the same meaning as the vles in the previousxample. Althought might seem

like a kft-recursion which does not terminate, this is not the case. The reason is that predicates a
evduated only in case of LR conflictd.et’'s assume the abe rule is irvolved in a conflict. Then

trial parsing would be started with declaration as start symbol. But theeahte would solely
define the start state for this trial parse and therefore the start state would not contain a conflict. As
consequence the predicate is not used during trial parsing (at least at the start state) and there is
danger of an infinite recursion of trial parses.

A possible condition to be used in a semantic predicate coubtyeninformation about the
last rule or more precisely the last nonterminal recognized by the.pBosehis purpose the parser
provides a variable called

yyNonterminal

and a set of named constants such as:

yyNTdeclaration
yyNTstatement
yyNTexpression

A constant is generated fowesy nonterminal by prefixing its name wiyyNT. The \ariable
yyNonterminal holds the nonterminal of the left-hand side of the rule which has been reduced last
This variable can be accessed in semantic predicates or in semantic actions and this may be of ga
use in determining whether a trial parse needs to be done. This feature wageduotoh tiack-

ing in [Mer93].

It must be noted, that semantic predicates should not and can not be used for tasks of tt
semantic analysis in a compil&irst, one can not rely on whether a semantic predicate is actually
executed, because it is used only in case of LR conflicts. Second, the purpose of this construct is 1
be able to control parsing depending on information from a symbol table or some other global dat
structure. Theemphasis is still on parsing or syntactic analysis. Or in other words, the main pur
pose of a parser is still to perform syntactic analysis and not to perform semantic analysis. This doe
not prevent semantic analysis to be performed during parskhgwever, this should be done just by
appropriate code in the semantic actions of the rules. This would also be the right place fer the for
mulation of context conditions. The check of cemisonditions is a classical task of semantic anal-
ysis and it should not be n@g up with semantic predicates in a grammar whose sole purpose is to
support syntactic analysis.

3. LALR(1) and LR(1) Grammars

The parser generathark processes LALR(1), LALR(2) as well as LR(1) grammarse follow-

ing is valid if the number of lookahead tokens is one, which is theullefWth option -0 an
LALR(1) parser is generated which is based on a so-called LR(0) automaton. This is the default be
haviour With option -1 an LR(1) parser is generated which is based on a so-called LR(1) automa-
ton. Wth options -01 an LALR(1) parser is generated which is extended locally to LR(1) where
necessary using an algorithm similar to the lane-tracing algorithm published aggr P
[Pag77a, Bg77b]. Atext book exkample of an LR(1) grammar which is not LALR(1) is the fatio

ing:

Lark 14

TOKENabcd

RULE
S:Aa|bAc|Bc|bBa.
A:d.
B:d.

The commands ’lark’ or 'lark -0’ yield the following messages:

Warning reduce reduce conflict implicitly repaired at state: 3
on lookahead: a c
Warning grammar s not LALR(1)

The commands ’lark -1’ or ’lark -01’ yield:

Information grammar is LR(1)

In general, an LR(1) automaton has mamore states than an LR(0) automaton and the gener
ation effort is considerably highefherefore, the default settings for the options should e gi
preference er the explicit use of the options -1 or -01. The options -01 willesaly nary LR
conflicts as will option -1.In general, this is done with less consumption of time and memory dur
ing parser generation and it results in a smaller parser.

Although the class of LR(1) grammars is in theorgéarthan the class of LALR(1) grammars,
it should not be expected that an LR(1) parser generatoessohay more conflicts than an
LALR(1) parser generatorFirst, all shift-reduce conflicts found during LALR(1) parser generation
are also detected during LR(1) parser generation. There is only a chance that the number of reduc
reduce conflicts is decreased. Second, as the number of states may increase, either because of
lane-tracing algorithm or because of the request for an LR(1) automaton with option -1, it is possi-
ble that the number of states with conflicts may increase, too. This does not mean tbaflets
caused by ne reasons are added, but the existing conflicts may be spveatbtates created
additionally For large grammars with mgmeduce-reduce conflicts it can be adiageous to use
option -0 because the lane-tracing algorithm can tend to the generation of a full LR(1) parser with.
out solving more conflicts than in the LALR(1) cagecording to the current practicatgerience,
grammars that are not LALR(1) but which are LR(1) are rarely found.

4. AmbiguousGrammars

In some cases language definitions are ambiguous or it may be meeaieonto describe a lan-
guage feature by ambiguous rules than by unambiguous ones. In general, the structure of inp
according to an ambiguous grammar can not be recognized unmistakable, because theralare se
solutions. Ambiguous grammars do nall fnto the classes of LALR(1) or LR(1) grammarsithw/

out additional information, ambiguous grammars can not be processed sendibhk.byhis sec-

tion describes he to solve many ambiguity problems.

The classical Xample which leads to an ambiguous grammar isddregling elseproblem
which is present for example iragtal and in C. Suppose a grammar contaimsrtwes for IF
statements such as the following:

statement : 'IF’ expression 'THEN’ statement .
statement : 'IF’ expression 'THEN' statement 'ELSE’ statement .

Analyzing the input

IF b THEN IF c THEN d ELSE e

Lark 15

it is not clear whether the ELSE belongs to the first or to the second IF THEN. Another typical
example is the definition of expressions by rules tile following:

expression : expression "*’ expression .
expression : expression '+’ expression .
expression : '(’ expression ')’ .
expression : identifier .

Given a gammar containing the abe mulesLark would produce a message saying the gram-
mar contains a conflict and that it is not LR(1).

Warning shift reduce conflict implicitly repaired at state: 264
on lookahead: ELSE
Warning grammar is not LR(1)

Before we describe the meaning of this message and what to do in such a case wesha
briefly hov the generated parser works.

4.1. LR Conflicts

The generated parser is a stack automaton controlled by a parse table. The automaton is charact
ized by the contents and the administration of a stack and a set of states. A state describes a par
the input already analyzed. The operation of the automaton consists of the repeat@dneof

steps. A step is thexecution of an action and the transition from the actual state to another one.
The steps are controlled by the parse table which basically implements a transition function, map
ping a state and the next input token to an action:

Table : Statex Token — Action

There are primarily te actions: The actioshift means to read or consume an input token. The
actionreduceis used when a rule has been recognized and it means to imaginarily replace in the
input the right-hand side of the recognized rule by its left-hand side.

Given an anbiguous grammathe ab@e transition function can not be computed, because the
function would be ambiguous, tocoiFsome table entries characterized by a pair (state, token) there
would be seeral different actions. Wo cases can arise: If a table entry could contain a shift action
as well as a reduce action wevbashift-reduce conflict If a table entry could contain tweduce
actions concerning different rules wevhareduce-educe conflict In general, not only te actions
are irvolved in a conflict bt an arbitrary numberlf a conflict is detected, its kind, the state num-
ber, and the tolen involved are reported. In the almessage, the parser generator reports a shift-
reduce conflict at a state with the internal number 264. This conflict arises if the next input token is
ELSE. Thenext input token is also called lookahead token or just lookahead.

4.2. ConflictResolution

In case of a conflict,ark applies the follaing steps in order to construct an unambiguous transi-
tion function. For al rules involved in a conflict a precedence and associativity is determined, if
possible. The rules indicating a shift action reedhe precedence and associativity of the token to
be shifted. The rules indicating a reduce action retain theirpyzecedence and associativiglues.
These are either determined by the right-most operator in the rule or by an exphetiyPEC
clause. The latter dominatesyaexisting operators (see also section 2 8pw, seveal cases can be
distinguished depending on whether all rulesoiwed in the conflict ha&e pecedence and

Lark 16

associativity values or whether there are rules with (syntactic or semantic) predicates.

If the conflict can be resadd without using predicates then it is resolved statically during genera-
tion time of the parseotherwise it is resolved dynamically during the run time of the parser.

4.2.1. ExplicitRepair

If all involved rules hee precedence and associdiy values, the conflict resolution proceeds as fol-
lows:

- In case of a shift-reduce conflict and rules witHedi#nt precedences, the action of the rule with
highest precedence is preferred. If all rulesehthe same precedence then the assuitiati
(which must be the same for all rules) is considered: Left associativity selects the reduce actiol
and right associativity selects the shift action. Otherwise no associativity is specifiedif No
there are rules with predicates then "dynamic repair” is performed as describedeselaan
error message is reported.

- In case of a reduce-reduce conflict, the rule with the highest precedence is rditiceck are
several rules with the same highest precedence and there are rules with predicates then "dynam
repair” is performed as described helalse an error message is issued.

These conflict solutions are classified eaplicit repair as long as "dynamic repair" is not per
formed. The are reported as informations.

4.2.2. Implicit Repair

If there is at least one rule without precedence and assdygiaimd none of the rules has a (syntac-
tic or semantic) predicate, the conflict is resolved as follows:

- In case of a shift-reduce conflict, the shift action is preferred.
- In case of a reduce-reduce conflict, the rulegifirst is reduced.
These conflict solutions are classifiedraplicit repair. They are reported as warnings.

4.2.3. DynamicRepair

If there are rules with a (syntactic or semantic) predicate aqudic repair” either is not applica-
ble or it failed then the conflict is resolved dynamically during the run time of the parser in the fol-
lowing way:

- The predicates are checked in a certain order until one yieldsTthen the associated rule is
recognized (reduced). If all predicates yield false then the conflict is resolved similar to the
"implicit repair" strategy described alm In case of a shift-reduce conflict, the shift action is
preferred. Incase of a reduce-reduce conflict, the first rule without a predicate is reduced. If all
rules hae a pedicate then the first rule with a predicate is reduced.

- A semantic predicate of the form "? { condition }" yields true if tkdwation of the condition
yields true.

- A syntactic predicate of the form "? terminal” yields true if the lookahead token is equal to this
terminal.

- A syntactic predicate of the form "? nonterminal” yields true if the tokens not processed so f
can be devied from this nonterminal. This initiates a so-caltadl parsewhich is explained fur
ther belov.

- A predicate with a rggtion operator '-’ (form "? - predicate") verses the result of the pieus
definitions.

Lark 17

The conflict solutions performed during run time are classifiedlymamic epair. They are
reported as warnings by the parser generator.

4.2.4. Tial Parsing

The condition in a semantic predicate may accessgtghn the same way as semantic actions. It

is recommended to use solely read-only access of attributes and of global variables in a conditiol
In general, side-effects are possible in a conditionweher, this is problematic and deserves spe-
cial consideration: First, one can not rely on tkecation of those side-ffcts, because the condi-

tion is evaluated only in case of LR conflicts. Second, the rule could be reducectat states of

the parser Some of these states couldvieaa onflict and others doh’ Thenthe condition wuld

be ealuated sometimes in order to try to recognize the rule and sometime$hiat, no mecha-

nism is provided to automatically undoyaside-efects - this would dll into the responsibility of

the user.

A trial parsechecks if the tokens not processedaocan be deved from a nonterminalThis
Is accomplished by recuvsly starting a parse which uses this nonterminal as start symbol. If the
trial parse succeeds the predicate yields true. If the trial parse detects syntax errors then these err
are not reported and the predicate yields false. In both cases the streaem®itdiacked-up to the
position before starting the trial parse. This method can also be called backtracking parsing. It i
user controlled backtracking because the user can explicitly specify when to apply a trial parse b
adding a predicate and what to check for by the selection of an appropriate nontefnmahalars-
ing or backtracking may be nested. This is the case if during trial parsing an other conflict is
resolved using trial parsing.

The semantic actions desergpecial consideration with respect to trial parsitig.general,
semantic actionsxecuted during trial parsing should be undone because only fbet ef the
semantic actionsxecuted during the final parse is desirddowever, to undo arbitrary semantic
actions is gpensve and more or less impossible. Thereforeptkinds of semantic actions are dis-
tinguished: conditional semantic actions and unconditional semantic acGionslitional semantic
actions are enclosed in curly brackets '{" and '}, unconditional semantic actions are enclosed in
edged braosts [and ’]. Unconditional semantic actions aneeeuted by default during all pars-
ing modes: trial, standardufber, and reparse.Conditional semantic actions areeeuted by dedult
in the parsing mode standard, {tteee not eecuted in mode trial, and during the modeéfdr and
reparse theirxacution is under user control. In general, thixecaition of semantic actions can be
additionally controlled by an action flag and so-called selection masks. The section about "Repars
ing" describes the detalils.

The "usual" semantic actions representing the result or output of parsing are conditional
semantic actions and should therefore be enclosed in '{" andTHe unconditional semantic
actions enclosed in [and ']’ are primarily prioled for attribute computations during trial parsing
and for the eplicit execution of YYACCEPT or YYABORT statements. These latter statements are
currently aailable for the target languages C, C++yaJand Modula-2. The can be used for the
premature termination of standard or trial parsing with or without errors. ##ricomputations
might be necessary during trial parsing if atitéovalues are used in semantic predicates. In general
arbitrary actions including those causing side-effects are possibhevetpno mechanism is pro-
vided to automatically undo those side-effects in case a trial alsdftfis in the users responsibil-
ity to either undo side-effects or to cope with them otherwises recommended not to use side-
effects in unconditional semantic actions.

Lark 18

4.3. Examples

The dangling else ambiguity already mentioned in chapter 4, is usualgdsobrrectly by the
implicit repair strategyTherefore, additions to the grammar rules are not necessary:

statement : 'IF’ expression 'THEN’ statement .
statement : 'IF’ expression 'THEN' statement 'ELSE’ statement .

However, an implicitly repaired conflict leads to a Warning message:

Warning shift reduce conflict implicitly repaired at state: 264
on lookahead: ELSE
Warning grammar s not LR(1)

The dangling else problem can also be repaixgticitly. We regad THEN and ELSE as operators
and define precedencevéts for them:

PREC
NONE THEN’
NONE 'ELSFE’

Now the conflict is repaired explicitly and this leads to an Information message:

Information shift reduce conflict explicitly repaired at state: 264
on lookahead: ELSE
Information grammar is LALR(1) after explicit repair

Grammar rules for expressions can be written mainly mdwles: First, separate nontermi-
nals are used for differentvgs of precedence such as for example expression, termactod fsee
example in section 2.7)Usually this kind of rules do not lead to an ambiguitgweve, a parser
for these rules is relatly inefficient, because in order to recognize a constant as a posgibds-e
sion as mayreduce actions are necessary as there ags lef precedence (e. g. more than 10 in
C).

Second, only one nonterminal is used for the description of expressions (see example in chaj
ter 4). A disadantage of this style is that the rules are ambiguous and cawsal $&R conflicts.
However, the conflicts can easily be resolved by tkplieit specification of precedence and asso-
ciativity for every operator as shown b&lo The advantage of this style is itdiegieng because
evay construct in an expression can be recognized with a single reduce action.

Example: Precedence and Associativity for Pascal Operators

PREC
LEFT '=" <> <’ <="">" >=" "IN’
LEFT UNARY_OPERATOR
LEFT '+ -’ 'OR’
LEFT * /' 'DIV’ 'MOD’ 'AND’
LEFT 'NOT’
NONE 'THEN’
NONE 'ELSE’

The operator UNRY_OPERAOR is ot a Pascal operatdt is added in order to define a separate
precedence &l for the unary operators '+ and ’-’. This separate precedemekiteassociated
with the grammar rules for unary operators with a PREC clause (see section 2.5).

Lark 19

Example: Description of Expressions for Pascal (Excerpt)

expression : '+’ expression PREC UNARY_OPERATOR
| ' -’ expression PREC UNARY_OPERATOR
| e xpression '+ expression
| e xpression ’-’ expression
| v ariable
| ¢ onstant

More s@ere LR conflicts can be solved with predicates. Examples for the syntax of predicates can
be found in section 2.104 larger example for dynamic conflict repair is described in section 5.3.

5. Explanationof LR Conflicts

If there are conflicts in the grammar and the options evb@se) or -w are set, then the reasons for
the conflicts arex@lained. Whileoption -v selects the explanation of all conflicts, option -w selects
the explanation of implicitly and dynamically repaired conflicts and it suppresses the explanation of
explicitly repaired conflicts. The explanation is written to a file whose name consists of the name of
the input file with the stik .dbg The name ifarser.dbgwhen the grammar is read from standard
input. The technique for the explanation of conflicts follows the method published in [DeP82].

5.1. Derivation Trees

For every state with conflicts and fovery so-called situation wolved in a conflict, a fragment of a
derwation tree is printed. Situations are also called items in the parsing literateinsill\Wse both

terms as syngms. Asituation consists of a grammar rule, a lookahead token, and a pogition.
position describes kofar a rule has been recognized in this state. It is indicated by a dot character
in the right-hand side of the rule. The dation tree explains o a lookahead token and a rule can
interfere. The devetion tree has three parts as shown in Figure 1:

s: root of part 1 (start symbol)
I root of part 2

r: root of part 3

t: lookahead token

rhs: right-hand side of rule

rhs t]

Fig. 1: Structure of the Destion Tree used to explain an LR Conflict

Lark 20

- The first part describes the detion from the start symbol s of the grammar to an intermediate
rule. Two neighbouring symbols r and | in this intermediate rule are the roots of the other tw
parts (subtrees).

- The second part uses the right one of thogesimbols as root (l). It describes the dation of
the lookahead tan. The lookahead token is the left-most token in the last rule of this part (sub-
tree).

- The third part uses the left one of those symbols as root (r). It describes vhkaheof the rule.
The three parts of a deation tree are printed in an ASCII representation one after the other.

5.2. Explicit and Implicit Repair

In this section we describe th&péanation for conflicts that can be repaired either explicitly or
implicitly. The next section deals with dynamically repaired confliots. the description of the
structure of the conflict explanation we will use tkaraple of thedangling elseconflict mentioned

in section 4. W haveadded line numbers to the left as points of reference. The explanation of a
conflict consists of te parts: The first part contains the detion trees presented aland the
second part contains a summary that describes the resolution of the conflict. darpleg the first

part starts at line 1 and the second parts start at line 22.

Line 1 gves two numbers of a state with a conflict: Arternal number followed by an inter
nal number enclosed in parentheses. The internal number of a state is used within the parser gen
ator. It is in general diferent from the external number of the state used in the generated paeser

Example: Explanation produced for the "dangling else" conflict

1 State 192 (2 64): derivation trees
2 -
3
4 s hift reduce conflict implicitly repaired
5
6 . program EOF_
7 " PROGRAM'’ Identifier prog_params ’;".block '’
8 | abel const type var proc 'BEGIN'.statement_seq 'END’
9 . statement
10 'IF expr 'THEN'.statement 'ELSE’ statement
11 | 'IF expr THEN’ statement.’ELSE’ statement
12 'IF expr THEN’ statement.
13
14 reduce 228 statement: 'IF’ expr "'THEN’ statement. {ELSE’} ?
15
16

17 .statement

18 'IF expr THEN’ statement.’ELSE’ statement

19

20 shift 229 statement: 'IF’ expr "'THEN’ statement.’ELSE’ statement ?
21

22 State 192 (2 64): summary

23
24
25 ignore reduce 228 statement: 'IF expr "'THEN’ statement. {ELSE"}

26 retain shift 229 statement: 'IF’ expr "'THEN’ statement.’ELSE’ statement

Lark 21

difference between these numbers arises from the fact that some states become useless after o
mizations and a consecudi quence of xdernal numbers is used for the states in the generated
parser Note, that een gates with a conflict can be remeol during optimization. Those states are
reported with an external number of zero.

Line 4 describes the type of the conflict (shift reduce conflict in xample) and which strat-
egy the generator used to reselt (implicit repair).

The lines 14 and 20 contain theota@tuations or items of this state whictvegiise to the con-
flict. In both cases the lookahead token is 'ELSE’. Upon seeing the lookahead token 'ELSE’ the
first situation leads to the action "reduce the sti@ment: 'IF’ expr 'THEN’ statement "
whereas the second situation leads to the action "shift tka'mlse’ ". A shift action would mean
to continue the analysis of the rukeatement: 'IF’ expr 'THEN’ statement.’ELSE’ state-
ment" by moving the dot . behind the token 'ELSE’. The numbers 228 and 229 refer to the line
numbers of the rules in the grammadihe dots *.within the right-hand sides of the rules describe
how far the analysis of the rules has proceeded. The token to the right of thésdbe’lookahead
token. In case of a reduce action, the dot is at the end of the right-hand side and the lookahead tok
Is not part of the right-hand side. The lookahea@nak determined by the possible context of the
rule. It is enclosed in curly brackets {" and '} in order to express its origin from the context.

The lines abee the situations explain whthese situations are in the same state amdthe
lookahead to&n for reduce situations can folla rule. The explanation for reduce situations con-
sists of a devition tree with three parts as mentioned in section 5.1. The first part of thatideri
starts at the start symbol of the grammar (line 6: program) and leads to a rule wherevétierderi
for the lookahead starts (line 10).€€y line contains the right-hand side of a grammar rule. The dot
in a line describes kofar the analysis has proceeded. The symbol after a dot is the left-hand side
for the rule in the next line. In the last line of the first part of thevaen (line 10) twvo symbols
are important. The symbol after the dot (statement) is the left-hand side or root for the third part o
the denvation and the next symbol (ELSE’) is the left-hand side or root for the second part of the
derivation which explains the lookahead token.

In the aboe example, the second part of the dation consists just of one line (line 11). Itis
marked with the character ’|' at the left ngar. It starts with the same right-hand side as theipre
ous line, only the dot has m&l one symbol to the right. In our example wesdadeached a termi-
nal symbol which constitutes the lookahead token ("ELSE’). If this symbol is a nonterminal then a
dervation consisting of seeral lines would be printed. In the last line of the second part of the
derwation the dot is avays in front of a terminal symbol and thugptains the origin of the looka-
head tokn. Ingeneral there can beveeal contexts that contrilte the lookahead tek. Inthis
case seeral different dewations will be produced, one fovery context.

The third part of the desétion is contained in line 12. The nonterminal after the dot of the first
part of the deviation (line 10: statement) is the left-hand side or root for this part of theatieni
In general the third part of the dation can extendwer sevaal lines. The last line (line 12) repre-
sents the conflicting situation or item.

For shift situations only the first part of a deaiion is printed because there is no lookahead
token from a context wolved in this case. This deation starts from the start symbol and leads to a
situation where the dot describes the current state of the analysis (line: 18). It can be observed th
mary derivations share a common dpaning. Inorder to present only information of redace,
common beginnings of dedtions are not repeated. Instead the charactéraré.printed. Only the
last line of common beginnings is displayed (line 17 is equal to line 9). Therefore the characters ...
in line 16 stand for the same information as is contained in lines 6 to 8.

Lark 22

Example: Grammar with dynamic resolution of LR conflicts
RULE

compound_statement : {’ declaration_list statement_list '}’

declaration_list
| d eclaration_list declaration

statement_list
| s tatement_list statement

declaration : ? declaration declaration_specifier declarator ’;’

declaration_specifier : TYPEDEFname [printf (“trial action\n");]
{ p rintf ("final action\n"); }

declarator : IDENTIFIER [printf ("trial action\n");]
{ p rintf ("final action\n"); }
| * (declarator’)
| d eclarator [T
| ¢ ompound_statement

statement : expression ’;’

expression : expression '++’
| T YPEDEFname '(’ expression’)’ /* cast */
| I DENTIFIER '(expression ')’ [* call */
| | DENTIFIER

TYPEDEFname . IDENTIFIERS$i ?

{ GetString ($i.Scan.ldent, name), isupper (name [0]) }
| | DENTIFIER ? IDENTIFIER

The information about an LR conflict is terminated by a summary (lines 22 to 26). The sum-
mary &plains hav the conflict was resolved. Conflicts are solved by splitting the situations into tw
sets of so-called ignored situations and retained situatidhs. actions induced by the set of
ignored situations are ignored. The retained situations are consistent becguseibe &actly
one action. This action will be taken by the generated pansttie example the parser will shift the
lookahead token 'ELSE’ in state 26Again, the numbers 228 and 229 refer to the line numbers of
the rules in the grammar.

5.3. DynamicRepair

In this section we describe the explanation for conflicts that are repaired dynamically during the rur
time of the generated parséi/e will use a tiry excerpt from a C++ grammar adapted from [Mer93]
that solves parsing problems of C++ using semantic predicates and trial parsing (backtracking).

First, there is the typedef problem (also present in C) where it is to decide whether an IDENTI-
FIER token denotes a typedef name or an identifigrlike aher solutions, we do not makhis
decision in the scanner but in the parBer this reason the first right-hand side of the grammar rule
for the nonterminal TYPEDEFname has been augmented with a semantic predicate. Its conditio
simulates a symbol table lookup that checks whether an IDENTIFIER should be treated as typede
name. Our simulation treats IDENTIFIERSs as typedef names when the first letter is a capital letter.

Lark 23

Second, there is another ambiguity in the grammar rising from tlvestyée of casts for
expressions. The token sequence

TYPEDEFname (IDENTIFIER) ;

can be recognized as a declaration or as a statement. Ce$ got/problem with the requirement

that in case of such an ambiguity the construct shall be treated as a declaration. One solution for tr
requirement is to use trial parsing befowerg declaration. If trial parsing using the nonterminal
declaration succeeds then we are sure ve hagkclaration and can perform final or standard pars-
ing for a declaration. Otherwise we do not parse it as a declaration in which case the @adser w
continue to analyze a statement_list. Trial parsing is triggered by the construct "? declaration” or
the right-hand side of the rule for the nonterminal declaration. Xd®m@e grammar contains four

LR conflicts which are reported as follows:

Information reduce reduce conflict dynamically repaired at state: 7
on lookahead: IDENTIFIER

Information reduce reduce conflict dynamically repaired at state: 8
on lookahead: IDENTIFIER ({

Information shift reduce reduce conflict dynamically repaired at state: 35
on lookahead: (

Information shift reduce reduce conflict dynamically repaired at state: 36
on lookahead: (

Information reduce reduce conflicts: 2

Information shift reduce reduce conflicts: 2

The last tvo gates with conflicts contain a shift reduce conflict as well as a reduce reduce conflict
for one lookahead t@hn. These kinds of conflicts are classifiedlaift reduce reduce conflictd\Vle

will discuss the explanation for state 36 in this chaptegain, we hae added line numbers to the

left as points of reference.

The lines 1 to 27 contain the deion trees for the rules wolved in the conflict. As three
rules are imolved, three devation trees are produced.he interesting part is found in the summary
starting at line 32 where the dynamic conflict resolution is described. Line 32 statast ttheaf a
dynamic decision is used if the parser is in state 36 and the lookaheadigdK. The diferent
solutions of conflicts performed dynamically during run time are numbered. In this case the
dynamic decision scheme has number 4. First, the predicate of the grammar rule in line 50 will be
checled, which is a semantic condition (line 33). Then, the predicate of the grammar rule in line 51
will be checked. The latter is a syntactic terminal predicate that tests whether the lookadeas tok
' (line 35). This syntactic predicate ma&kno sense in C++ - it has been added to construct a state
that leads to a dynamic decision where more than one predicate i®adh&tle predicates are
checled in the gien order until one yields true. Then the associated rule is reduced. If none of the
predicates yields true, then a default action is performed. The possible default actions are listed aft
line 36. The haveto be interpreted as in the case xplesit or implicit repair The retained action
is taken. In the example the default action is to shift the token ’(’.

5.4. Explanationof Differences

The options -v or -w produce the explanation of all applicable conflicts, by default. In extreme case:
when there are mgnconflicts these xplanations can be ratheulky and therefore tedious to
inspect. Theadditional option -D restricts the set ofpdained conflicts to those which areaneith
respect to the previous run of the parser generatas option works as follows:

Lark 24

Example: Explanation produced for a dynamically repaired LR conflict
State 19 (3 6): derivation trees

s hift reduce reduce conflict dynamically repaired

. compound_statement _EOF_
" {" declaration_list.statement_list '}
statement_list.statement

. expression ’;’

10 TYPEDEFname ’(.expression’)’

11 .TYPEDEFname ’(’ expression’)’

12 | TYPEDEFname.(expression)’

13 IDENTIFIER.

15 reduce 49 TYPEDEFname: IDENTIFIER. {(}r?

17 ..
18 | TYPEDEFname.(expression)’
19 IDENTIFIER.

©Coo~NOO A~ NP

21 reduce 51 TYPEDEFname: IDENTIFIER. {(}r?

23 ..

24 TYPEDEFname ’'(.expression’)

25 IDENTIFIER.(expression ')’

27 shift 46 expression: IDENTIFIER.(expression’)’ ?
29 State 19 (36): summary

30

32 dynamic decision 4 on lookahead '(’:

33 check predicate in line 50: ? { GetString ($i.Scan.ldent, name),

34 isupper (name [0]) }

35 check predicate inline 51: ? ’(

36 default:

37 ignore reduce 49 TYPEDEFname: IDENTIFIER. {(}

38 ignore reduce 51 TYPEDEFname: IDENTIFIER. {(}

39 retain shift 46 expression: IDENTIFIER.'(’ expression ')’

Whenlark is invoked the first time with the option -D it produces an additional file with the
suffix .cft (for conflict) which contains an internal representation of all conflibtging subsequent
runs with the option -D this file is used to determine the setwafcogflicts. Explanations in the file
with the sufix .dbgare produced for me conflicts, only The file with the suix .cft is updated to
reflect the current set of conflicts. Additionaln autput file with the sdix .dlt (for delta) is pro-
duced which summarizes thefdilences of the grammar and the set of conflicts with respect to the
previous run.

The lines in a delta file (see exampleyédhe following meaning: The characters ’-" and '+’
in column one indicate omissions and additions of items. The items under consideratimerare gi
by the next word in\ery line which can be one of: Terminal, Nonterm, Rule, or Conflict. The fol-
lowing information in the line describes the en&kythe end of the file a summary lists the numbers
of the omitted and added items.

This feature can be used forveel purposes. First, it reduces the set of explained conflicts and
thus easies the effortvMolved in conflict inspection. Second, the summary diedghces in the
grammar allows for thealidation of the last changes. Third, this feature can be used to compare

Lark 25

Example: Contents of the delta file Parser.dlt (excerpt)

+ Terminal STORE
+ Terminal ANSI

- Nonterm 5_accept_i_Trial_2
- Nonterm 5_accept_Trial_2

+ Nonterm special_names_|
+ Nonterm page_ o

- Rule set: SET set | TO ON on_off |
- Rule set: SET set | TO OFF on_off |

- Rule on_off e: name | TO ON

- Rule on_off e: name | TO OFF

+ Rule set: SET set | To ON on_off |

+ Rule set: SET set | To OFF on_off |

+ Rule on_off e: name_| To ON

+ Rule on_off e: name_| To OFF

+ Rule use: USE For exception_or_error

+ Rule use: USE For exception_or_error On use_|

+

Conflict State 320 (555) on lookahead {"SPECIAL-NAMES’ }
+ Conflict State 594 (1029) on lookahead {name }
+ Conflict State 654 (1092) on lookahead {NEXT }

- Conflict State 986 (1689) on lookahead {name }

Summary

+ Terminals 2
- Nonterminals 2
+ Nonterminals 2

- Rules 4
+ Rules 6
- Conflicts 1
+ Conflicts 3

arbitrary grammars. The file with the Buf.cft supplied for a run dfark with option -D has not to

be necessarily the output of the previous run. The user cgnacagmflict file from ary run in the

past into the current directoryhis file can be from the current project gerea dfferent one. Itis

just necessary that this file has beered@omevhere so thalark does not werwrite it. This way it

Is possible to get a summary of changes thes leen carried out in geral small steps or to com-
pare grammar describing tlifent dialects of a language. The comparison for grammars is done on
the base of grammar rules only - semantic actions are not taken into account.

6. Reparsing

In some cases it might be necessary to parse a segment of the input twiee saveal times.

Lark supports this with the so-callegparsingfeature. Mainly tw aspects hee © be egaded: The
tokens hae © be luffered and thex@cution of semantic actions has to be controllatdeaffering

of the tokenswids rescanning of the source and supplies then®kor the second or later passes
ove the input. Usuallyjust the last passver a ssgnent of the input shouldxecute the so-called

final semantic actions which generate an internal representation of the input such as a syntax tre
However, previous passes should be able xeaeite non-final semantic actions allowing feample

to compute symbol-table information that can be used in semantic predicates in order to guid

Lark 26

parsing. Only the influence of semantic predicates on parsingaestreparsing because thiayw
a dfferent parsing result can be acked from additional passes.

6.1. Rarsing Modes

In combination with the existing trial parsing featureesal modes of the parser can be distin-
guished. The follwing table lists the modes and characterizesyemode by the associated beha
iour of the parser:

Mode Abbre;Buffer Getbken Semantic Uncond. Error Abort Start Stop

viation Actions Actions
standard S no scanner yes/no yes/no yes/no no call EOF
trial T yes scanner nol/yes yes/no no yes conflict erroror accept
buffer B yes scanner yes/no yes/no nol/yes no call callor EOF
reparse R no kuffer ~ yes/no yes/no nolyesno call EOB

The columns of the abe table hae the following meaning:

Column Meaning
Mode nameof the parsing mode
Abbreviation letterabbreviating the parsing mode
Buffer whetherthe tokens are stored in a buffer
GetTolen wherghe tokens come from; the entry scanner means that tokens
might as well come from the buffer if tokens are left in the buffer
from previous parsing phases in buffer or trial mode.
Semantic Actions| whether conditional semantic actions enclosed in { keceted
yes/no gecution depends on selection mask of the statements (see below)
Uncond. Actions | whether unconditional semantic actions enclosed in [}emaed
yes/no gecution depends on selection mask of the statements (see below)
Error whetheeerror recoery is executed upon syntax errors;
this includes error messages, error re@aiu error recoery.
nolyes gecution of error receery can be requested by the user
Abort whethelparsing is aborted upon syntax errors
Start hev the mode is initiated:
call by an explicit procedure call
conflict implicitly in order to resole LR cnflicts during run time
Stop wherthe mode terminates:
call by an explicit procedure call
EOF uporreaching end of file
EOB uponreaching end of buffer
error upordetection of a syntax error
accept upomsuccessful completion of parsing

6.2. Control of Reparsing

The following procedures andanables control parsing an switching between parsing modes. The
details of these objects are language dependent and explained more precisely in the section ab

Lark 27

"Interfaces". Here we gé a1 overview using the syntax of the language C:

Procedure/driable Meaning

int <Parser> (gid); initiate parsing in mode standard,

use the start symbol defined first in the grammar or
the first nonterminal if no start symbolsveaeen defined,
return the number of syntax errors

int <Parser>2 (initiate parsing in mode standard,
int StartSymbol); use the start symbol StartSymbol,
return the number of syntax errors
long BufferOn (enable buffering of tokens W
rbool Actions, enable/disableecution of semantic actions (see below)
rbool Messages); enable/disable reporting of error messages (see below)

if mode is standard: switch to mode bufi@se ignore;
return the position of the current lookahead token in the token buffer

long BufferOf (void); disablebuffering of tokens [
if mode is buffer: switch to mode standard, else ignore;
return the position of the current lookahead token in the token buffer

long BufferPosition; ariable holding the position of the current lookahead token in the buffer
int ReParse (initiate parsing in mode reparse,

int StartSymbol, use the start symbol StartSymbol,

int From, parse from (including) buffer position From,

int To, parseup to (excluding) buffer position To,

rbool Actions, enable/disableecution of semantic actions (see below)

rbool Messages); enable/disable reporting of error messages (see below)

return the number of syntax errors found during ¥sdation

void BufferClear (wid); | signalthat the contents of the token buffer can be deleted

void SemActions (enable/disablgeeution of semantic actions
rbool Actions); true = enable, false = disable

void ErrorMessages (enable/disable reporting of error messages
rbool Messages); true = enable, false = disable

Trial parsing as well as reparsing are implemented by reeugslls of the internal parsing
procedure. All of these calls start parsing with a certain start syribohse of reparsing the non-
terminals used as start symbolydd be cbclared as start symbols after tlegsord START. The
right context for trial parsing or the segment to be reparsesithde cerivable from the nontermi-
nal used as start symbol. This nonterminal does na babe me of the nonterminals already con-
tained in the grammailt can be a nonterminal that has been added together with grammar rules for
the single purpose of trial parsing or reparsing. Thisnallthe processing of arbitrary segments as
right contet or for reparsing. It should be mentioned that in both cases parsing is independent of
the left context or the parsing histomhis comes from the recuvs! activation of the parser which
starts with an empty stack and am&art symbol and therefore there is no influence of the state of

Lark 28

the previously acte parser.
The four parsing modes can be aattd from other parsing modes in ngagombinations:

mode carbe actvated from
standard| outside
trial standarditrial, buffer, reparse

buffer standard
reparse standarttjal, buffer, reparse

If reparsing occurs in a nesteashion and theuffer segments of twectivations overlap then
one condition has to be fulfilled: The end position of the segment of the nested (youngairmacti
may not lie after the end position of the outer (older)ambin.

The relationship between the parsing modes and the nezacsivations of the internal pars-
ing procedure is as folles: The parsing modes standard anffds are associated with the initial
activation, only Every need for trial parsing leads to a recuesictivation in parsing mode trial and
evay call of ReParse leads to a recueskictivation in parsing mode reparse. The procedures
BufferOn and BufferGfswitch the mode of the initial agtition between standard and buffer.

Besides by a modeyery actiation is characterized by twflags that control thexecution of
conditional semantic actions and the reporting of error messages and hynitsopy of the
LOCAL section. The values of the flags are initialized according to the following table.

flag | standard trial buffer reparse
Actions true false argument gument
Messages| true false argument gument

The \alues for the parsing modesfter and reparse arevgn by the arguments of the procedures
BufferOn and ReParse. Thalues of the current wecation can be changed atyaime using the
procedures SemActions and ErrorMessages.

The LOCAL section is copied into the internal parsing procedure. Thereforeatiables
declared in this section are local to the parsing procedurevang recursve ativation leads to
new copies of these local variables.

Upon return from an aetition in the mode trial or reparse the state of the previoughoti
is reestablished. This concerns the mode, tleftags, and the LOCAL section. Additionally
successful call of BéérOff will reset the values of the flags to the state before the last successful
call of BufferOn.

The main result of reparsing will usually be some kind of internal representation such as a syn
tax tree. This tree or gother result is coreniently computed using the S-attribution mechanism of
Lark. This result can be transferred from the reparsingaiicin of the parser to its caller by a
global variable.

6.3. SemanticActions

Unconditional (as well as conditional) semantic actions stended by so-callegdelection masks
Groups of statements can be prefixvith a selection mask. This mask starts with a hash mark '#
and it may be follwed by up to four letters out of the set $BT and R. The letters specify the

Lark 29

parsing modes in which the following group of statements is tadmeieed. Example:

[1=0;# TRIi=1#TBSi=2;j=0;]{m=0;#RSn=0;}
With the variables and values defined in the generated parser this/aestuo:

[
{i=20}
if ((yytrial | yyreparse) & yyControl.yyMode) {i=1;}
if ((yytrial | yybuffer | yystandard) & yyControl.yyMode) {i=2;j=0;}

if (yyControl.yyActions) { m = 0; }
if ((yyreparse | yystandard) & yyControl.yyMode) { n = 0; }

Only the first group of statements can be written without a selection mMaskssing selec-
tion mask in an unconditional semantic action defaults to #STBR which indicates that the state
ments of the group areecuted in gery parsing mode A missing selection mask in an conditional
semantic action indicates that the statements of the groupeardel if the current action flag has
the value true. Groups of statements with a selection maskéahalarly regardless whether
contained in an unconditional or in a conditional semantic action. Txa&iuteon depends on the
current parsing mode. The notions of unconditional and conditional semantic actions ag/not v
precise - thg are a bit historic. Wh the introduction of selection masks and the current action flag
only the first group of statements without a selection mask in edged brackets is a real uncondition:
semantic action, all other groups of statements are in some way conditional ones.

GLOBAL {
typedef union { tScanAttribute Scan; } tParsAttribute;
int stack [10], * stack_ptr = stack;

define push(x) * s tack ptr ++ =x
define pop * - s tack ptr

define stack_is_empty stack ptr == stack

}

LOCAL { char name [256];}

TOKEN ...

START compound_statement declaration_list
RULE

compound_statement ; '{’ [#S BufferOn (rfalse, rfalse);
#SBTR push (BufferPosition);]
declaration_list [ReParse (yydeclaration_list, pop,
BufferPosition, rtrue, rtrue);
if (stack_is_empty) {
BufferOff (); BufferClear (); } 1
statement_list

y

/* further rules as before *}

Lark 30

6.4. Example

The following example is arxgension of the grammar used in the chapter about "Dynamic Repair".
The declaration list in a compound statement is parsed twigeaction is inserted right before the
nonterminal declaration_list which enablegfering of tokens using a call of BufferOn and which
records the beginning of a declaration list by inspecting the variable BufferPosition. During the first
pass ger a declaration list semantic actions as well as error messages are digakzbhnd action

is inserted immediately after the nonterminal declaration_list where the second passtisdacti
using a call of ReParse. Appropriate values are suppliegjasiants in order to specify whichgse

ment of the bffer shall be parsed am and according to which start symbol. This time semantic
actions and error messages are enabled.

This example is extremely complicated because declaration lists can be nested and because
the presence of trial parsing. The example specifies that reparsing is perfeengdare a declara-
tion list is recognized gardless of the parsing mode. Therefore declaration lists are pai@edrag
the modes standard, trial and reparse as well agegt eesting leel. Not only trial parsing and
reparsing are nested but yhmay be triggered from each oth&his may lead to numerous parsing
of the same segment depending on the nesting depth and the occurrence of trial parsing. Also,
stack is necessary to store the starting positions of declaration listeratnesting lgel. Only
when the stack is empty it is correct to disable the tokéferband to clear it using calls of Bef-
Off and BufferClear.

7. Listings

Several listings with information about the grammar such as the sets of terminals and nonterminals
or the generated automaton can be selected with the optionsang -¢. All listings are printed on
standard output. The grammar from the previous chapter is used in the examples of this chapter.

7.1. Terminals

The option -x selects a listing of all terminal symbols of the gramifiais list contains all termi-
nals, either declared explicitly or implicitlgnd shows the intger representation used in the gener
ated parsefThe scanner procedure Gekén has to return thesalues. The list startsvasys with
the special token _EOF_ encoded by 0 which signals end of file.

Example:

Terminals

EOF 0
IDENTIFIER 1
!(! 2
!)! 3
+4’ 4
5
6
7
8
9

N U

7.2. Nonterminalsand Rules

The option -z selects a listing of all nonterminal symbols and all grammar Exesy nonterminal
is followed by its so-called FIRST set. This set contains all terminals that can be the first terminal o

Lark 31

Example:
Nonterminals and Rules

0_intern, FIRST: {IDENTIFIER '{" }
1 compound_statement EOF_
2 declaration

compound_statement, FIRST: {{’ }
3 '’ { declaration_list statement_list '}’

declaration_list, FIRST: {IDENTIFIER Epsilon }
4
5 declaration_list declaration

statement_list, FIRST: {IDENTIFIER Epsilon }
6
7 statement_list statement

declaration, FIRST: {IDENTIFIER }
8 1 declaration_Trial_1 declaration_specifier declarator ’;’

1 _declaration_Trial_1, FIRST: {Epsilon }
21

all possible dewietions from the nonterminal. The special engsilon indicates that an empty
sequence can be dexil from the nonterminal. After the FIRST set foll@ll right-hand sides or

rules of a nonterminal. Every rule is printed on a separate line gnisheith a rule numbetf a

line contains only a number (e. g. 4) then this represents an empty right-hand side. The first nonte
minal named 0_intern is\vaflys added to a grammadts right-hand sides are all possible start sym-
bols of the grammain the example belo there is the regular start symbmmpound_statement

and the start symbaleclarationwhich is needed for trial parsing. Nonterminals introduced by the
parser generator because of necessary grammar transformatiemamas consisting of the num-

ber of the right-hand side for this nonterminal, the name of the nonterminal, a kind incioatar
position number within the right-hand side. The kind indicators are Act, UCAct, Pred, Trial, or Prec
and thg describe the construct that caused a grammar transformation. In the follo@mgle the
syntactic predicate ? declaration has to bgethout of rule number 8. It is replaced by the artificial
nonterminal 1_declaration_Trial_1 and an empty rule with number 21 is added for this nonterminal
The syntactic predicate is wa from rule 8 to rule 21 which is not shown in the listing.

7.3. Automaton: States and Situations

The option -y selects a readable output of the table that controls the generated parsasts out

of a list of states. Every state hatmumbers: an external and an internal one. The external state
number is used in the generated parser and it appears in the trace of parsing steps. The internal s
number is used in messages of the parser genetatery state is characterized by a set of so-
called situations or items which induce the possible parsing actions.

The output for a state begins with theot#ate numbers. This is followed by the actions that
are possible in this state. The list of actions contains triples and may rsengeweal lines. The
first part of a triple is either a terminal or a nonterminal. The second part abbreviates an actiot
which is specified further by the number that constitutes the third part of the triple:

Lark 32

s n gands for shift a token and set the state to n

rn gands for reduce rule number n

sr n stands for shift a token and reduce rule number n
dn gands for dynamic decision scheme n

The action sr sshift reduceis a combination of a shift action and a reduce actietions of this
kind may result from the elimination of LR(0) reductions which is performed autlefnd which
can be disabled with option -r.

The meaning of a triple is: If the parser is in this state and the lookahesdiso&qual to the
first part of a triple then the action specified by the rest of the triple is teebeted. The parser
uses nonterminals as "lookahead" symbols, fblois is the case after reduce actions.eLakift
action, a reduce action changes the parser state, too. The details of the parsing algbatkrmaref
the same as fdcalr and can be found in [Gro90]A dynamic decision scheme igeeuted if a
predicate is used to s@han LR onflict during run time of the parsén general, seeral predicates
may be checked where some of the predicates may trigger a trial parse until a decision is mac
whether to perform a shift action or a reduce action for a certain rule.

After the list of actions follows a set of situations or items that characterize a state. Every situ-
ation is printed on a separate line and gibs with a numberA situation is a grammar rule with a
dot in its right-hand sideThe dot indicates hofar parsing has proceeded when the parser is in this
state. Thdact that there are geral situations to a state can be interpreted as an analysigedlse
rules at the same time or in parallel. Sometimes, situations are followed by a set of terminal sym
bols enclosed in curly brackets {" and '}. These sets are so-called lookahead sets which are com
puted only where necessamhe meaning is that if parsing continues from this state and the rule of
a stuation will finally be recognized then the rule can only be ¥afld by terminals out of its
lookahead set.

The first states are the so-called start states of a plardee following example there are dw
start states - state 1 for standard parsing and state 2 for trial parsing.

Lark 33

Example:
Automaton (States and Situations)

1, intern: 1, Actions:
{’ s 3, compound_statement s 4,
1 O_intern: .compound_statement EOF_
2 compound_statement: .'{’ declaration_list statement_list '}’

2, intern: 2, Actions:
IDENTIFIER r 21, declaration sr 2, 1_declaration_Trial_1 s 5,
3 0_intern: .declaration
4 declaration: .1_declaration_Trial_1 declaration_specifier declarator ’;’
5 1 declaration_Trial 1:.

3, intern: 3, Actions:
IDENTIFIER r 4, '} r 4, declaration_list s 6,
6 compound_statement: '{.declaration_list statement_list '}’
7 declaration_list: .
8 declaration_list: .declaration_list declaration

4, intern: 4, Actions:
_EOF_r1,
9 0_intern: compound_statement._ EOF _

5, intern: 6, Actions:
IDENTIFIER s 7, declaration_specifier s 8, TYPEDEFname sr 9,
11 declaration: 1 _declaration_Trial_1.declaration_specifier declarator ’;’
{ EOF_IDENTIFIER'C Y "++ " T'{'}Y}
12 declaration_specifier: . TYPEDEFname
13 TYPEDEFname: .IDENTIFIER
14 TYPEDEFname: .IDENTIFIER

7, intern: 8, Actions:
IDENTIFIER d 2,'(d 2,'{ d 2,
21 TYPEDEFname: IDENTIFIER. {IDENTIFIER
22 TYPEDEFname: IDENTIFIER. {IDENTIFIER

C{}
C{}

26, intern: 46, Actions:
)" sr 16, '++’ sr 15,
124 expression: TYPEDEFname '(’ expression.’) {) '++'}
125 expression: expression.’++ {7’ ++'}

8. Interfaces

A generated parser has three interfaces: The interface of the parser module iteslthegbkarse
procedure ailable for e. g. a main program. The parser uses a scanner module whose task is t
provide a stream of tokens. In case of syntax errorsvgfecedures of a module named Errors are
necessary to handle error messadéagure 2 gves an owerview of the modules and their intade
objects. Circleslenote procedures, squares denote variables, avilsapresent procedure calls

or variable access. The details of the interfaces depend on the implementation lafidneggee
discussed in language specific sections.

Lark 34

PaserDrv

Paser_ Paser_
Debug/ Token-
yyDebug Name
Paser
Y
Error- Get- .
Attribute Toky Attribute MessageMessagel

Scanner Errors

Fig. 2: Interface Objects of the Modules

8.1. C

The option -c selects the generation of a parser in C that can be translated by compilers for ANSI-C
K&R-C, or C++. This is accomplished by appropriate preprocessor daecti

8.1.1. Rurser Interface

The parser interface consists ofotparts: While the objects specified in thdeznal interface can
be used from outside the pardbe objects of the internal interface can be used only within a lan-
guage description. The external parser interface in the file <Parser>.h has the following contents:

Lark 35

define yy<start_symbol_1> 1

define yy<start_symbol_2> 2

define t EOF_ 0

define t <token_1> 1

define t <token_ 2> 2

extern rbool <Parser>_Debug

extern char * < Parser>_TokenName [];
extern void Begin<Parser> (void);
extern int <Parser> (void);
extern int <Parser>2 (int StartSymbol);
extern void Reset<Parser> (void);
extern void Close<Parser> (void);

- The procedures <Parser> andasger>2 are the generated parsing routines. The argument Start-
Symbol of <Parser>2 specifies the start symbol to be used for parsingludshas to be one of
the named constants yy<start_symbol_The procedure <Parser> uses as start symbol the start
symbol defined first in the grammar or the first nonterminal if no start symbeds than
defined. Theprocedures return the number of syntax errégseturn value of zero indicates a
syntactically correct input.

- For every nonterminal that is specified as start symbol a named constant is defined whose nam
consists of the name of the nonterminal with the prefix 'yifiese constants areg arguments
for the procedure <Parser>2.

- For every terminal in the grammar a named constant is defined if optowefiXis gven. The
names for the constants consist of a prefix and the name of the terminal if this is possible. Th
prefix defaults to 't_".

- The procedure Reset<Parser> should be called after parsingwehtbigesxecution of the proce-
dures <Parser> or <Parser>2 has been terminated abnorngllysing longjump. This proce-
dure frees anmemory allocated by the parser.

- The contents of the et code section named BEGIN is put into a procedure called
Begin<Rarser>. This procedure is called automatically upaanyeinvocation of the procedure
<Parser>. It can also be called explicitly by the user.

- The contents of the wet code section named CLOSE is put into a procedure called
Close<Parser>. It has to be called explicitly by the user when necessary.

- The variable <Brser>_Debg controls the trace of parsing actions. This trace is useful for
delugging a parseA trace is printed if the parser module is compiled with the optiofy k-
BUG and the variable <Parser>_Debug is set to true (= 1).

- The array <Brser>_ToknName preides a mapping from the internal representation oériek
to the external representation agegiin the grammar specification. It maps mees to strings
and it is used for>ample by the parser to providgpeessie messages for the error handling
module.

The internal parser interface consists of the following objects:

Lark 36

define yylnitStackSize 100
define yylnitBufferSize 100
define YYACCEPT
define YYABORT
yytNonterminal yyNonterminal ;
static FILE * yyTrace = stdout;
static void SemActions (rbool Actions);
static void ErrorMessages (rbool Messages);
static void MemoryClear (int Position);
static int GetLookahead (int k);
static void GetAttribute (int k, <Scanner>_tScanAttribute * Attribute);
static long BufferOn (rbool Actions, rbool Messages); O
static long BufferOff (void); O
static long BufferPosition O
static int ReParse (int StartSymbol, int From, int To,
rbool Actions, rbool Messages);
static void BufferClear (void);
define TOKENOP
define BEFORE_TRIAL
define AFTER_TRIAL
define ERROR
define NO_RECOVER

Some of the objects are implemented differently using macros instead of functions.

The initial size of the parser stack is defined by the value of the preprocessor symbol yylnit-
StackSize with a default of 100. The stack size is increased automatically when nedéssary
initial stack size can be changed by including a preprocessor wirécthe GLOBAL section

such as:

define yylnitStackSize 200

The initial size of the taén huffer for trial parsing and reparsing is defined by the value of the
preprocessor symbol yyInitBigirSize with a default of 100. Theuffer size is increased auto-
matically when necessaryhe initial uffer size can be changed by including a preprocessor
directive in the GLOBAL section such as:

define yylnitBufferSize 50

The statement YXCCEPT can be used in semantic actions. It terminates the cumwecation
of the internal parsing procedure with the current count of errors.

The statement YABORT can be used in semantic actions. It terminates the curreaaition of
the internal parsing procedure with the current count of errors increased by one.

The variable yyNonterminal holds the nonterminal of the left-hand side of the rule which has
been reduced last. Thisnvable can be accessed in semantic predicates or in semantic actions
and this may be of good use in determining whether a trial parse needs to be doreiable v
takes on alues of enumerated constants generatedviy eonterminal whose names are con-
structed by prefixing the name of the nonterminal yytNT. Example:

yyNTdeclaration
yyNTstatement
yyNTexpression

Lark 37

The variable yyTrace selects the file used for output of the trace informatendefault alue
Is stdout. This value can be changed by assignments in the BEGIN section or in semantic action

The procedure SemActions controls thescaition of conditional semantic actions without a
selection mask (see section 6.3The values of the argument Actions mean: true = enadibe f
= disable. Theselection remains valid until awecall of the procedure or the termination of the
current ivocation of the internal parsing procedure.

The procedure ErrorMessages controls the reporting of error messages by thelparsaiues

of the agument Messages mean: true = enable, false = disable. The selection remains valid unt
a rew all of the procedure or the termination of the currembgation of the internal parsing
procedure.

The procedure MemoryClear is useful when the option -b is set to instruct the generated parser 1
memorize and reuse the results ofvjes trial parses. These results are stored at the positions
in the token bffer where trial parses started. A call of MemoryClear clears a memorized result at
the position in the tokenuiffer given by the argument Position. The values for the position can
be obtained from the variable BufferPosition (see below).

The function GetLookahead returns the k-th lookahead token.

The procedure GetAttritie returns via its second argument called Attribute the additional prop-
erties or attributes of the k-th lookahead token.

The function BufferOn switches the parser to the madtb This is only possible if the parser

Is in the mode standard, otherwise the mode remains unchampedarguments Actions and
Messages control thexecution of semantic actions and the reporting of error messages in the
same way as the procedures SemActions and ErrorMessBigedunction returns the position

of the current lookahead token in the token buffer.

The function BuflierOff switches the parser to the mode standard. This is only possible if the
parser is in the modeuffer, otherwise the mode remains unchanged. The selection for Actions
and Messages is reset to the state before the call tdfrBuaf Thefunction returns the position

of the current lookahead token in the token buffer.

The variable BufferPosition holds the position of the current lookahead tokhe token uifer.
Its value can be read atyatime while parsing in the modeutber in order to request positions of
arbitrary tokens in the token buffer.

The function ReParse initiates parsing in the mode reparse using the start symbol StartSymbc
The contents of the tek huffer from (including) liffer position From up to (excludingluftier
position D is parsed again according to the start symbol. Thgeraents Actions and Messages
control the gecution of semantic actions and the reporting of error messages in the same way a:
the procedures SemActions and ErrorMessagd®e function returns the number of syntax
errors found during its wocation.

The procedure BtérClear signals that the contents of the tokeffelb can be deleted. The
tokens will not be deleted immediately but when it is safe to do this. It is important to tell the
parser when uffered tokens can be deleted, because otherwise all remaining ingns teitl be
buffered. Thereforevery call of BufferOn should be accompanied by a call of BufferClear.

The macro DKENOP can be used taeeute a piece of user code just beforerg token is con-
sumed by the parserhis feature works only if the parser uses the tokdfeb This is the case
if trial parsing is actiated or one of the following routines is used: GetLookahead, Getéttrib
BufferOn, BuferOff, ReParse, or BidrClear Then the macro isxecuted &ery time a token is

Lark 38

consumed either the first time coming from the source or repeatedly coming from theuisken b
fer. The macro is located before the return statement of a function that provides the parser witl
tokens. The current token is stored in the local variable yyToken:

TOKENOP
return yyToken;

- The macro BEFORE_TRIAL can be used t@®aite statements before the start wére trial
parsing.

- The macro AFTER_TRIAL can be used teeute statements after the end wdrg trial parsing.
For example one application is to undo side-effects of trial parsing that fails.

- The macro ERROR can be used xeceite statements in case of a syntax error beforextoe-e
tion of the builtin error recaery. Example:

define ERROR fprintf (stderr, "syntax error at %d, %d\n", \
Attribute.Position.Line, Attribute.Position.Column);

If the preprocessor symbol NO_RECOVER is defined thenuittnkerror receery is excluded
from the generated parserhe parser will terminate upon the first syntax error.

8.1.2. Scanneinterface

The generated parser needs some objects usually provided by a scanner mbdul@odule
should ha&e a leader file called <Scanner>.h to satisfy the include dwedfi the parserThis
header file has to provide the following objects:

i nclude "Position.h"
typedef struct { tPosition Position; } <Scanner>_tScanAttribute;

extern void <Scanner>_ErrorAttribute (int Token,

<Scanner>_tScanAttribute * Attribute);
extern <Scanner>_tScanAttribute <Scanner>_Attribute;
extern int <Scanner>_GetToken (void);

- The procedure <Scanner>_Geké&n is repeatedly called by the parser in order to vecai
stream of tokens. Every call has to return the internal integer representation oixthécken.
The end of the input stream (end of file) is indicated bwlaevof zero. The integeralues
returned by the procedure <Scanner>_Gk#h hae © lie in a range between zero and the max-
imal value defined in the grammahis condition is not checked by the parser and values outside
of this range may lead to undefined behaviour.

- Additional properties or attributes of ks are communicated from the scanner to the parser via
the global variable <Scanner>_AttributerFokens with additional propertiesdile. g. mmbers
or identifiers, the procedure <Scanner>_®Gk¢h has to supply the value of this variable as side-
effect. The type of thisariable can be chosen freely as long as it is an extension of the record
type <Scanner>_tScanAttribute.

- The variable <Scanner>_Attribute muswéa feld called Position which describes the source
coordinates of the current k. It has to be computed as side-effect of the procedure <Scan-
ner>_GetTokn. In case of syntax errors, this field is passed @srant to the error handling
routines.

- The type tRrsAttribute must be a record type with at least one field called Scan of type <Scan-
ner>_tScanAttribte. Additional properties or attributes of tokens are transferred from the global

Lark 39

variable <Scanner>_Attribute to this field. See section 2.9 for an example.

During automatic error repaia parser may insert t@hs. In this case the parser calls the proce-
dure <Scanner>_ErrorAttribute in order to obtain the additional properties outairibf an
inserted token which isgn by the agument Bken. Theprocedure should return in the second
argument called Attribute default values for the additional properties of this token.

Example:
void ErrorAttribute (int Token, tScanAttribute * pAttribute)
{
pAttribute->Position = Attribute.Position;
switch (Token) {
case /*Ident */ 1: pAttribute->Ident = Noldent; break;
case /* Integer */ 2: pAttribute->Integer = 0 ; b reak;
case /* Real */ 3: pAttribute->Real = 0.0 ; break;
}
}

8.1.3. Error Interface

In case of syntax errors, the generated parser calls procedures in orderd® ipformation about
the position of the errpthe set of epected tokens, and the behaviour of the repair and/esco
mechanism. These procedures areveoiently implemented in a separate error handling module.
The information provided by the parser may be stored or processed in an arbétyard proto-
type error handling module is contained in the libr&guse(files reuse/c/Errors.h and re-
use/c/Errors.c) whose procedures immediately print the information passeduasets. This
module should ha a leader file called Errors.h to satisfy the include divecin the parserThe
header file has to provide the following objects:

H OHFHH OHHHBTHI

define xxSyntaxError 1 / * e rror codes */
define xxExpectedTokens 2

define xxRestartPoint 3

define xxTokenlnserted 4

define xxTokenFound 6

define xxError 3 / * e rror classes */
define xxRepair 5
define xxInformation 7

define xxString 7 / * i nfo classes */

extern void ErrorMessage (int ErrorCode, int ErrorClass, tPosition Position);
extern void ErrorMessagel (int ErrorCode, int ErrorClass, tPosition Position,

int InfoClass, char * Info);

extern void Message (char * ErrorText, int ErrorClass, tPosition Position);

There are fie kinds of messages a generated parser may repbey are encoded by the first
group of the abee cmnstant definitions. The messages are classified with respectetdyse
according to the second group of constant definitions.

The procedure ErrorMessage is used by the parser to report a message, its class, and its sou
position. It is used for syntax errors and rexyp locations (restart points).

The procedure ErrorMessagel isdikhe procedure ErrorMessage with additional Information.
The latter is characterized by a class or type indication (InfoClass) and an untyped pointer (Info)

Lark 40

During error repajrtokens might be inserted. These are reported one by one grate¢hdassi-
fied as xxString (char *). Atwery syntax error the set ofdd or expected tokens is reported
using the classification xxString, too.

- The procedure Message is similar to the procedure ErrorMessage. The first argument specifies
message te instead of an error code. This procedure might be called only if the reparsing fea-
ture is used.

8.1.4. Rarser Driver

A main program is necessary for the test of a generated .paingeparser generator can provide a
minimal main program in the file €lfser>Drwc which can sewras ést drver. It has the folleving
contents:

i nclude "<Parser>.h"

int main (void)

{
(void) <Parser> ();
Close<Parser> ();
return O;

8.2. C++
The option -+ selects the generation of a parser in the language C++.

8.2.1. Rarser Interface

The parser interface consists ofotparts: While the objects specified in the external interface can
be used from outside the pardbe objects of the internal interface can be used only within a lan-
guage description. The external parser interface in the filmseP>.h defines a class named
<Parser> and it has the following contents:

Lark 41

define rbool char
define <Parser>_BASE_CLASS
class <Parser> <Parser>_BASE_CLASS {

public:

define yy<start_symbol_1> 1
define yy<start_symbol_2> 2
define t EOF_ 0
define t <token_1> 1
define t <token_ 2> 2

const char * const * TokenName

rbool yyDebug ;
<Parser> (void);
<Parser> (<Scanner> *, Errors * = & gErrors);
int Parse (void);
int Parse (int StartSymbol);
void Reset (void);
“<Parser> (void);
<Scanner> * ScannerObj ;
Errors * ErrorsObj

- The werloaded method &'se is the generated parsing procedure. The argument StartSymbol
specifies the start symbol to be used for parsing. Its value has to be one of the named constatr
yy<start_symbol_i>. Whout agument, the start symbol defined first in the grammar or the first
nonterminal if no start symbolsVveleen defined are used as start symidle method returns
the number of syntax error# return value of zero indicates a syntactically correct input.

- For every nonterminal that is specified as start symbol a named constant is defined whose nam
consists of the name of the nonterminal with the prefix 'yifiese constants aregarguments
for the method Parse.

- For every terminal in the grammar a named constant is defined if optowefixis gven. The
names for the constants consist of a prefix and the name of the terminal if this is possible. Th
prefix defaults to 't_".

- The method Reset should be called after parsing wietiee execution of the method Parse has
been terminated abnormally. g using exception handling. This method freeg em@mory allo-
cated by the parser.

- The member ScannerObj refers to the scanner used by the parsdras to be an object from
the class <Scanner>. This object has tovipk® the features described beglan the section
"Scanner Interface". A scanner object has to be created and assigned to the member Scanner(
before the method Parse is called. See the section "Parger Bor an example.

- The member ErrorsObj refers to the error handler used by the.pErsehas to be an object
from the class Errors. This object has to provide the features describadibdlre section
"Error Interface". The member ErrorsObj initially refers to the object gErrors from the library
Reusdfiles reuse/cpp/Global.h and reuse/cpp/Global.c).

- The contents of the target code section named BEGIN is put into a constructor caliger=<P
It is called automatically upon initialization of a parser object.

- There is another constructor called <Parseratlable which has tw aguments. Itdoes the

Lark

same as the constructor without arguments. Additiontilly members ScannerObj and Etror
sObj are initialized with thealues gven as aguments. Thesecond argument is optional. If not
given the default object gErrors is used.

- The contents of the target code section named CLOSE is put into a destructor catedr><P
It is called automatically upon finalization of a parser object.

- The member variable yyDebug controls the trace of parsing actions. This trace is useful for

delugging a parseA trace is printed if the parser module is compiled with the optiofy k-

BUG and the variable yyDebug is set to true (= 1).

- The "array" DkenName provides a mapping from the internal representation efdak the

external representation as/gn in the grammar specification. It maps integers to strings and it is

used for example by the parser to provide expressessages for the error handling module.

- The preprocessor symbol aBer> BRSE CLASS can be used to specify a base class for the
class <Parser> using a #define dinextin the EXPOR section of a language description.

Example:

EXPORT {

define Parser BASE_CLASS : public BaseClass

}

The internal parser interface consists of the following objects:

define yylnitStackSize
define yylnitBufferSize
define YYACCEPT

define YYABORT
yytNonterminal yyNonterminal
static FILE * yyTrace
static void SemActions
static void ErrorMessages
static void MemoryClear
static int GetLookahead
static void GetAttribute
static long BufferOn
static long BufferOff
static long BufferPosition
static int ReParse
static void BufferClear
define TOKENOP

define BEFORE_TRIAL
define AFTER_TRIAL
define ERROR

define NO_RECOVER

Some of the objects are implemented differently using macros instead of functions.

100
100

= stdout;
(rbool Actions);

(rbool Messages);
(int Position);
(int k);

(int k, <Scanner>_tScanAttribute * Attribute);

(rbool Actions, rbool Messages);

(void);

(int StartSymbol, int From, int To,
rbool Actions, rbool Messages);
(void);

OooOo

- The initial size of the parser stack is defined by the value of the preprocessor symbol yyinit-
StackSize with a default of 100. The stack size is increased automatically when nedéssary

initial stack size can be changed by including a preprocessor wirécthe GLOBAL section
such as:

Lark 43

define yylnitStackSize 200

The initial size of the tadn thuffer for trial parsing and reparsing is defined by the value of the
preprocessor symbol yyInitBfeirSize with a default of 100. Theuffer size is increased auto-
matically when necessaryhe initial huffer size can be changed by including a preprocessor
directive in the GLOBAL section such as:

define yylnitBufferSize 50

The statement YAXCCEPT can be used in semantic actions. It terminates the cuwecdtion
of the internal parsing procedure with the current count of errors.

The statement YABORT can be used in semantic actions. It terminates the curratiaition of
the internal parsing procedure with the current count of errors increased by one.

The variable yyNonterminal holds the nonterminal of the left-hand side of the rule which has
been reduced last. Thianvable can be accessed in semantic predicates or in semantic actions
and this may be of good use in determining whether a trial parse needs to be doreiable v
takes on alues of enumerated constants generatedviay eonterminal whose names are con-
structed by prefixing the name of the nonterminal yytNT. Example:

yyNTdeclaration
yyNTstatement
yyNTexpression

The variable yyTrace selects the file used for output of the trace informatendefault alue
Is stdout. This value can be changed by assignments in the BEGIN section or in semantic action

The procedure SemActions controls thescaition of conditional semantic actions without a
selection mask (see section 6.3The values of the argument Actions mean: true = enadiss f
= disable. Theselection remains valid until awecall of the procedure or the termination of the
current ivocation of the internal parsing procedure.

The procedure ErrorMessages controls the reporting of error messages by thelparsaiues

of the agument Messages mean: true = enable, false = disable. The selection remains valid unt
a rew all of the procedure or the termination of the currembgation of the internal parsing
procedure.

The procedure MemoryClear is useful when the option -b is set to instruct the generated parser 1
memorize and reuse the results ofvjpes trial parses. These results are stored at the positions
in the token bffer where trial parses started. A call of MemoryClear clears a memorized result at
the position in the tokenuiffer given by the argument Position. The values for the position can
be obtained from the variable BufferPosition (see below).

The function GetLookahead returns the k-th lookahead token.

The procedure GetAttritie returns via its second argument called Attribute the additional prop-
erties or attributes of the k-th lookahead token.

The function BufferOn switches the parser to the madieb This is only possible if the parser

Is in the mode standard, otherwise the mode remains unchampedarguments Actions and
Messages control thexecution of semantic actions and the reporting of error messages in the
same way as the procedures SemActions and ErrorMessBigedunction returns the position

of the current lookahead token in the token buffer.

Lark 44

The function BuferOff switches the parser to the mode standard. This is only possible if the
parser is in the modeutfer, otherwise the mode remains unchanged. The selection for Actions
and Messages is reset to the state before the call tdrBuaf Thefunction returns the position

of the current lookahead token in the token buffer.

The variable BufferPosition holds the position of the current lookahead tokhe token Uifer.
Its value can be read atyatime while parsing in the modeutber in order to request positions of
arbitrary tokens in the token buffer.

The function ReParse initiates parsing in the mode reparse using the start symbol StartSymbc
The contents of the tek huffer from (including) luffer position From up to (excludinguffer
position 1 is parsed again according to the start symbol. Theraents Actions and Messages
control the gecution of semantic actions and the reporting of error messages in the same way a:
the procedures SemActions and ErrorMessadgdse function returns the number of syntax
errors found during its wocation.

The procedure BiérClear signals that the contents of the tokeffelb can be deleted. The
tokens will not be deleted immediately but when it is safe to do this. It is important to tell the
parser when uiffered tokens can be deleted, because otherwise all remaining ingns teitl be
buffered. Thereforevery call of BufferOn should be accompanied by a call of BufferClear.

The macro DKENOP can be used taexute a piece of user code just beforergtoken is con-
sumed by the parserhis feature works only if the parser uses the tokdfeb This is the case

if trial parsing is actiated or one of the following routines is used: GetLookahead, Getéttrib
BufferOn, BuferOff, ReParse, or BtdrClear Then the macro isxecuted &ery time a token is
consumed either the first time coming from the source or repeatedly coming from theuisken b
fer. The macro is located before the return statement of a function that provides the parser witl
tokens. The current token is stored in the local variable yyToken:

TOKENOP
return yyToken;

The macro BEFORE_TRIAL can be used teaite statements before the start wérg trial
parsing.

The macro AFTER_TRIAL can be used t@eute statements after the end oérg trial parsing.
For example one application is to undo side-effects of trial parsing that fails.

The macro ERROR can be used xeceite statements in case of a syntax error beforexdoe-e
tion of the builtin error recgery. Example:

define ERROR fprintf (stderr, "syntax error at %d, %d\n", \
Attribute.Position.Line, Attribute.Position.Column);

If the preprocessor symbol NO_RECOVER is defined thenuittnkerror receery is excluded
from the generated parserhe parser will terminate upon the first syntax error.

8.2.2. Scanneinterface

The generated parser needs some features usually provided by a scanner class. This class shc
have a keader file called <Scanner>.h to satisfy the include direecfithe parserThis header file
has to define a class named <Scanner> which provides the following objects:

Lark 45

i nclude "Position.h"
typedef struct { tPosition Position; } <Scanner>_tScanAttribute;

class <Scanner> {

public:
<Scanner>_tScanAttribute Attribute
int GetToken (void);
void ErrorAttribute (int Token,

<Scanner>_tScanAttribute * Attribute);

- The method Getdken is repeatedly called by the parser in order to veceisream of tolens.
Every call has to return the internal igée representation of the "next" token. The end of the
input stream (end of file) is indicated by alue of zero. The integer values returned by the
method Getdken hae © lie in a range between zero and the maxirahlerdefined in the gram-
mar. This condition is not cheekl by the parser and values outside of this range may lead to
undefined behaviour.

- Additional properties or attributes of ks are communicated from the scanner to the parser via
the member Attribte. For tokens with additional propertieselik. g. mmbers or identifiers, the
method Getdken has to supply the value of thariable as side-effect. The type of thagiable
can be chosen freely as long as it is an extension of the record type <Scanner>_tScanAttribute.

- The member Attribute must ¥ a feld called Position which describes the source coordinates
of the current to&n. It has to be computed as side-effect of the methodstTIn case of syn-
tax errors, this field is passed as argument to the error handling routines.

- The type <Rrser>_tParsAttrilte must be a record type with at least one field called Scan of
type <Scanner>_tScanAttribute. Additional properties or attributes ehso&re transferred from
the member Attribute to this field. See section 2.9 for an example.

- During automatic error repa@ parser may insert tokens. In this case the parser calls the method
ErrorAttribute in order to obtain the additional properties or attributes of an inserted token which
Is given by the agument Bken. Theprocedure should return in the second argument called
Attribute default values for the additional properties of this token.

Example:
void Scanner::ErrorAttribute (int Token, tScanAttribute * pAttribute)
{
pAttribute->Position = Attribute.Position;
switch (Token) {
case /* Ident */ 1: pAttribute->Ident = Noldent; break;
case /* Integer */ 2: pAttribute->Integer = 0 ; b reak;
case /* Real */ 3. pAttribute->Real = 0.0 ;. break;
}
}

8.2.3. Error Interface

In case of syntax errors, the generated parser calls methods in order to provide information abo
the position of the errpthe set of epected tokens, and the behaviour of the repair and/egco
mechanism. These methods areveniently implemented in a separate error handling class. The
information provided by the parser may be stored or processed in an arb#ésaryA wrototype

error handling class is contained in the libraReuse (files reuse/cpp/Errors.h and

Lark 46

reuse/cpp/Errors.cxx) whose procedures immediately print the information passepirasras.
This module should wva a teader file called Errors.h to satisfy the include diveck the parser
The header file has to provide the following objects:

const xxSyntaxError = 1; / * error codes */
const xxExpectedTokens = 2;
const xxRestartPoint = 3;
const xxTokenlnserted = 4;
const xxTokenFound = 6;
const xxError = 3; | * error classes */
const xxRepair = b5;
const xxInformation = 7;
const xxString 7; / * i nfo classes */

class Errors {
public:
void ErrorMessage (int ErrorCode, int ErrorClass, tPosition Position);
void ErrorMessagel (int ErrorCode, int ErrorClass, tPosition Position,
int InfoClass, char * Info);
void Message (char * ErrorText, int ErrorClass, tPosition Position);

- There are fig kinds of messages a generated parser may repbg; are encoded by the first
group of the abee cmnstant definitions. The messages are classified with respectetdyse
according to the second group of constant definitions.

- The procedure ErrorMessage is used by the parser to report a message, its class, and its sou
position. It is used for syntax errors and rexyp locations (restart points).

- The procedure ErrorMessagel isdikhe procedure ErrorMessage with additional Information.
The latter is characterized by a class or type indication (InfoClass) and an untyped pointer (Info)
During error repajrtokens might be inserted. These are reported one by one gratdéhdassi-
fied as xxString (char *). Atwery syntax error the set ofdd or expected tokens is reported
using the classification xxString, too.

- The procedure Message is similar to the procedure ErrorMessage. The first argument specifies
message te instead of an error code. This procedure might be called only if the reparsing fea-
ture is used.

8.2.4. Rarser Driver

A main program is necessary for the test of a generated plingeparser generator can provide a
minimal main program in the file @lser>Drvcxx which can semeras ést drver. It has the follav-
ing contents:

i nclude "<Scanner>.h"
i nclude "<Parser>.h"

int main (void)

{
<Parser> ParserObj;
ParserObj.ScannerObj = new <Scanner>;
return ParserObj.Parse ();

Lark 47

8.3. Ava
The option - selects the generation of a parser in the language Ja

8.3.1. Rarser Interface

The parser interface consists ofotparts: While the objects specified in the external interface can
be used from outside the pardbe objects of the internal interface can be used only within a lan-
guage description. The external parser iaie#fconsists of the public classes and methods in the
file <Parser>.jaa which defines at least a class namedrser>. Additionatlasses may be defined

in the GLOBAL and EXPOR sections: those in EXPORbecome inner classes of <Parser> while
those in GLOB\L are separate from <Parser> but share the same source filevaietlat declar

ing more than one class in a file in this way is not usual practice and may confuse\soinelsla

so classes should normally be declared in the EXIP€@Rtion.

The class <Parser> has the following public methods and fields:

class <Parser> {

/* start symbols from START section if specified */
static final int yy<start symbol_1> 1
static final int yy<start_symbol_2> 2

static final intt__ EOF _ 0
static final int t_<token_1> 1
static final int t_<token_2> 2
public String yyGetTokenName (int token);
public boolean yyDebug = false;
public <Parser> (<Scanner> scanner)
throws java.io.|OException;
public int parse 0 throws java.io.|OException;
public int parse (int yyStartSymbol)
throws java.io.|OException;
public <Scanner> scanner ;
public Errors errorsObj = Global.errors;

- The overloaded methogbarseis the generated parsing procedure. ThyimentyyStartSymbol
specifies the start symbol to be used for parsing. Its value has to be one of the named constar
yy<start_symbol_i>. Whout agument, the start symbol defined first in the grammar or the first
nonterminal if no start symbols Ve been defined is used as start symbol. The method returns
the number of syntax error# return value of zero indicates a syntactically correct input.

- For every nonterminal that is specified as start symbol a named constant is defined whose nam
consists of the name of the nonterminal with the prefix 'yijiese constants areg arguments
for the methogarse

- For every terminal in the grammar a named constant is defined if optwefixXis given. The
names for the constants consist of a prefix and the name of the terminal if this is possible. Th
prefix defaults to 't_".

- The membescannerefers to the scanner used by the parBais has to be an object from the
class <Scanner>. This object has tovpie the features described bglm the section "Scanner
Interface". A scanner object has to be created and passed to the <Parser> conSgedioe

Lark 48

section "Parser Drer" for an example.

- The membeerrorsObjrefers to the error handler used by the parBeis has to be an object
from the class Errors. This object has to provide the features describadibdlre section
"Error Interface”. The membaegrrorsObj initially refers to the objecGlobal.errorsfrom the
library Reus€class Global).

- The contents of the tget code section named BEGIN is put into the <Parser> constructor and is
executed automatically upon initialization of a parser object.

- The contents of the target code section named CLOSE is put into a methodiraliieel This
method is usually called automatically by the JVM before the <Parser> object is garbage col-
lected, or it may be called directly.

- The fieldyyDebugcontrols the trace of parsing actions. This trace is useful for debugging a
parser A trace is printed if the C preprocessor macro YYDEBUG is defined in the GLOB
section angyDebugs set to true.

- The methodyyGetTokenNamprovides a mapping from the internal representation oériekto
the external representation asegi in the grammar specification. It maps integers to strings and
it is used for example by the parser to provigpressve messages for the error handling mod-
ule.

The internal parser interface consists ot/gig fields and methods from the <Parser> class with
additional features implemented using the C preprocessor language:

define yyScanAttribute <Scanner>.ScanAttribute
define yyInitStackSize 100

define yyInitBufferSize 100

define YYACCEPT

define YYABORT

/* local */ int yyNonterminal;

private CocktailWriter yyTrace;

private void semActions (boolean actions);
private void errorMessages (boolean messages);
private void memoryClear (int position);

private int getLookahead (int k) throws java.io.lOException;

private yyScanAttribute getAttribute (int k)
throws java.io.|OException;
private int bufferOn (boolean actions, boolean messages)
throws java.io.|OException;

private int bufferOff 0;

private int bufferPosition;

private int reParse (
int yyStartSymbol,

int yyFrom, int yyTo,
boolean yyActions, boolean yyMessages
) t hrows java.io.lOException;

private void bufferClear 0;
define TOKENOP

define BEFORE_TRIAL

define AFTER_TRIAL

define ERROR

define NO_RECOVER

Some of the objects are implementededédntly using macros instead of functions. The macro

Lark 49

yyScanAttributés described in Scanner Interface belo

The initial size of the parser stack is defined by thlkeies of the preprocessor symbol yylnit-
StackSize with a default of 100. The stack size is increased automatically when nedéssary
initial stack size can be changed by including a preprocessor récthe GLOBAL section
such as:

define yylnitStackSize 200

The initial size of the tokenuffer for trial parsing and reparsing is defined by thkie of the
preprocessor symbol yylnitBufferSize with a default of 100. Tinéeb size is increased auto-
matically when necessaryhe initial huffer size can be changed by including a preprocessor
directive in the GLOBAL section such as:

define yylnitBufferSize 50

The statement YAXCCEPT can be used in semantic actions. It terminates the cuwecdtion
of the internal parsing procedure with the current count of errors.

The statement YABORT can be used in semantic actions. It terminates the curratiaition of
the internal parsing procedure with the current count of errors increased by one.

The \ariableyyNonterminalholds the nonterminal of the left-hand side of the rule which has
been reduced last. Thianvable can be accessed in semantic predicates or in semantic actions
and this may be of good use in determining whether a trial parse needs to be donariable v
takes on values of constants generated ¥@ryenonterminal whose names are constructed by
prefixing the name of the nonterminal WytyNT. Example:

yyNTdeclaration
yyNTstatement
yyNTexpression

The \ariableyyTrace selects the file used for output of the trace informatitme default value is
stdout. This value can be changed by assignments in the BEGIN section or in semantic actions.

The procedursemActiongontrols the xecution of conditional semantic actions without a selec-
tion mask (see section 6.3.). The values of tgaraentactionsmean: true = enable, false = dis-
able. Theselection remains valid until awecall of the procedure or the termination of the-cur
rent invocation of the internal parsing procedure.

The procedurerrorMessages controls the reporting of error messages by the paides \alues

of the agumentmessges mean: true = enable, false = disable. The selection remains valid until
a rew all of the procedure or the termination of the currembgation of the internal parsing
procedure.

The methodnemoryCleaiis useful when the option -b is set to instruct the generated parser to
memorize and reuse the results of previous trial parBesse results are stored at the positions
in the token bffer where trial parses started. A callnmémoryCleaclears a memorized result at
the position in the tokenuiffer given by the argument Position. The values for the position can
be obtained from the fieloufferPosition(see below).

The methodyetLookaheadeturns the k-th lookahead token.

The methodgetAttribute returns the additional properties or atiitds of the k-th lookahead
token.

Lark 50

The methodufferOnswitches the parser to the moddfér. This is only possible if the parser is

in the mode standard, otherwise the mode remains unchanged. gliheeatsactionsandmes-

sages control the gecution of semantic actions and the reporting of error messages in the same
way as he methodsemActionainderrorMessa@es. The function returns the position of the-cur

rent lookahead token in the token buffer.

The methodufferOff switches the parser to the mode standard. This is only possible if the parser
is in the mode wffer, otherwise the mode remains unchanged. The selection for Actions and
Messages is reset to the state before the chliffsfrOn The function returns the position of the
current lookahead token in the token buffer.

The fieldbufferPositionholds the position of the current lookahead token in the tokterb Its
vaue can be read at yatime while parsing in the modeutber in order to request positions of
arbitrary tokens in the token buffer.

The methodeParse initiates parsing in the mode reparse using the start syyySohrtSymbol

The contents of the tek tuffer from (including) liffer positionyyFrom up to (excluding) bffer
position yyTo is parsed again according to the start symbidhe agumentsyyActionsand
yyMessges control the gecution of semantic actions and the reporting of error messages in the
same way as the methogemActionsaand errorMessa@es. The function returns the number of
syntax errors found during itsvocation.

The methodufferClear signals that the contents of the tokerifér can be deleted. The ks

will not be deleted immediatelyubwhen it is safe to do this. It is important to tell the parser
when huffered tokens can be deleted, because otherwise all remaining inpuas tokll be
buffered. Thereforevery call of bufferOnshould be accompanied by a calbofferClear.

The macro TOKENOP can be used xeaite a piece of user code just beforergtoken is con-
sumed by the parserhis feature works only if the parser uses the tokdfeb This is the case

if trial parsing is actiated or one of the folleing routines is used: getLookahead, getAtt)
bufferOn, lufferOff, reRarse, or bfferClear Then the macro isxecuted &ery time a token is
consumed either the first time coming from the source or repeatedly coming fromethdatiok

fer. The macro is located before the return statement of a function that provides the parser witl
tokens. The current token is stored in the local variable yyToken:

TOKENOP
return yyToken;

The macro BEFORE_TRIAL can be used teecute statements before the start oére trial
parsing.

The macro AFTER_TRIAL can be used t@eute statements after the end wdérg trial parsing.
For example one application is to undo side-effects of trial parsing that fails.

The macro ERROR can be used xeceite statements in case of a syntax error beforextivele
tion of the builtin error recgery. Example:

define ERROR System.err.println (
"syntax error at " + attribute.position());

If the preprocessor symbol NO_REER is defined then the builtin error reeoy is excluded
from the generated parseFhe parser will terminate upon the first syntax error.

Lark 51

8.3.2. Scanneinterface

The generated parser obtains input tokens from an instance of class <Scanner> widek fire
following:

- A methodgetTokenwhich returns the code of the next input token.

- A means of communicating ymdditional attritutes of the current token, for example tladue
of a numeric constant or a dictionary pointer associated with an idenfifier parser needs to
obtain the input position of groken for use in syntax error messages.

- A means of constructing a suitable attribute value for antakserted by the parser during error
repair.

The details of this inteaice may be tuned by preprocessor macros defined in the GLOBAL section
of the scanner and parser specificatidrisst we describe the default arrangement, and then we will
discuss the specification of the macros.

The usual interface to <Scanner> is:

class <Scanner> {
class ScanAttribute implements HasPosition {

}

public ScanAttribute attribute
public int getToken 0;
public ScanAttribute errorAttribute (int token);

- The methodyeTokenis repeatedly called by the parser in order to wecai sream of tolens.
Every call has to return the internal integer representation of the "nexti.tdke end of the
input stream (end of file) is indicated by a value of zeFbe integer values returned by the
methodgeTokenhave o lie in a range between zero and the maximahler defined in the gram-
mar. This condition is not cheekl by the parser and values outside of this range may lead to
undefined behaviour.

- Additional properties or attributes of ks are communicated from the scanner to the parser via
the field attribute For tokens with additional properties dile. g. mmbers or identifiers, the
methodgeTokenhas to supply thealue of this variable as sidefeft. Thetype of this wariable
can be chosen freely as long as it implementsHhePositioninterface from the package
de.cocolabveuse. Thisprovides access to an instance of class Position which describes the
source coordinates of the currentdok Incase of syntax errors, this field is passed gsnaent
to the error handling routines.

- The macroyyParsAttributedefines the type of object used for access to até#hfrom semantic
actions. er terminals the attribute is deed from the scanner attribute: by daft yyParsAt-
tribute is defined to be ja.lang.Object and the scanner attribute is copied by assignment.

- During automatic error repa@ parser may insert tokens. In this case the parser calls the method
errorAttributein order to obtain the additional properties or attributes of an inserted token which
is given by the agumenttoken The procedure should return defaudlues for the additional
properties of this token.

Lark 52

Example:

public ScanAttribute errorAttribute (int token)
{
/* Create a new attribute object based on the current attribute, i.e.
* ¢ opying the current position data.
*/
ScanAttribute result = new ScanAttribute (attribute);

/* Set the appropriate field according to the token type
*/
switch (token) {
case /*Ident */ 1: result.ident Noldent; break;
case /* Integer */ 2: result.integer = 0 ; b reak;
case /* Real */ 3: result.real = 0.0 ; break;

}

return result;

8.3.3. Tiloring the Parser
This section discusses the choices that aidahle to:

- determine the type associated with the attribute stack, that is the type used to holditesattib
non-terminals and terminals;

- determine the type of the attribute obtained from the scaitimar is the type used to access
attributes of terminals;

- the relationship between theseottypes.

The type used for elements on the attribute stack is determined by theyyRar@Attributewhich
defaults to jaa.lang.Object. Ag object may be used as an attribute & cast is usually required to
access attributes.

This choice yields rules of the form:
expr: expr '+ expr { $$ = n ew AddExpr ((Expr)$1, (Expr)$3);}
A devdopment of this schemevalves building a tree of attnite classes related by inheritance.

The root class is used as the attribute type, and has methods used to obtain the correct static type
in the following example.

Lark 53

GLOBAL {
#define yyParsAttribute Tree

}

EXPORT {
class Tree {
public Expr asExpr() {
/I throw ClassCastException

}
public AddExpr asAddExpr() {

/I throw ClassCastException

}
public DivideExpr asDivideExpr() {

/I throw ClassCastException

}
-

class Expr extends Tree {
public Expr Expr() {
return this;

}

}

class AddExpr extends Expr {
AddExpr (Expr lhs, Expr rhs) {
this.lhs = Ihs; this.rhs = rhs;

}
public AddExpr asAddExpr() { // overrides method from Tree
return this;

}
public Expr lhs, rhs;
}

class DivideExpr extends Expr {

}

}
RULE
expr: expr '+ expr { $$ = n ew AddExpr ($1.asExpr(), $3.asExpr()); }
We haveadded the root Tree class together with an 'as’ method/éoy possible descendant which
is then used in rules instead of &alype cast.Performance should be better as a polymorphic dis-
patch is more efficient than a cast.

A third possiblity is to use a basic type such as int for the attribute class. This is applicable in spe
cialised circumstances, as in the gee calc example supplied with the Cocktail disttikin. This
involves the use of aweother specialised macros not described here.

Some more macros deal with the type used for attributes obtained from the scanner and the relatio
ship between this and the parser attribute type.

- yyScanAttributalefines the scanner atutie type, by default an inner class ScanAttribute of the
scanner class.

- yyScanToPars(sis used to store a scanner atité in a variable of type yw@psAttribute. If
yyScanAttritute is not assignment compatible with gy$Attribute then it may be necessary to

Lark 54

create a ng object to encapsulate the value.

- yyAttributePositiondescribes he to obtain a Position object from a scanner atir@) this is
used in formulating parser error messages. The default is suitableyfalaas which imple-
ments the HasPosition interface.

- By default the scanner is assumed to provide the attribute for the currentdska public mem-
ber calledattribute Other schemes may be accomodated by defining the magBetScanAt-
tribute andyyPutScanAttributerhich are documented in the skeleton.

8.3.4. Error Interface

In case of syntax errors, the generated parser calls methods in order to provide information abol
the position of the errpthe set of epected tokens, and the behaviour of the repair and/egco
mechanism. These methods areveniently implemented in a separate error handling class. The
information praided by the parser may be stored or processed in an arbi@gryAndefault error
handling class Errors is contained in the librRgusevhose methods either immediately print the
information passed as arguments or store it for subsequent output sorted by pokisoriass is

fully documented in the HTML documentation supplied with Cocktail.

8.3.5. Rarser Driver

A main program is necessary for the test of a generated .paingeparser generator can provide a
minimal main program in the file elfser>Drv.jaa which can sem as est drver. It has the follev-
ing contents:

import java.io.*;
class <Parser>Drv {
public static void main (String [] argv) throws java.io.lOException {

String filename = null;
<Parser> parser = new <Parser> (new <Scanner> ());
for (inti=0;i<argv.length; i ++) {
if (argv [i].equals ("-D")) parser.yyDebug = true;
else filename = argv [i];

}

if (filename = null)
parser.scanner.beginFile (new FilelnputStream (filename));

parser.parse ();
parser.finalize ();

}

To dbtain a debugging trace of parser actions put "#define YYDEBUG" in the GL@Bction of
the parser specification and run with the command line optionByDdefault input is read from
stdin; to read from a file @& the file name as a command linguamnent. Br example to read from
buggy.in and output a trace:

java <Parser>Drv -D buggy.in

Lark 55

8.4. Modula-2

8.4.1. Rarser Interface

The parser interface consists ofotparts: While the objects specified in thaegnal interface can
be used from outside the parsihie objects of the internal interface can be used only within a lan-
guage description. The external parser interface in the file <Parser>.md has the following contents:

DEFINITION MODULE <Parser>;

CONST yy<start_symbol_1> = 1;

CONST yy<start_symbol_2> = 2;

CONST t EOF_ = 0;

CONST t_<token_ 1> =1,

CONST t_<token_ 2> = 2;

VAR yyDebug : BOOLEAN;

PROCEDURE Begin<Parser> ;

PROCEDURE <Parser> (): CARDINAL;

PROCEDURE <Parser>2 (StartSymbol: SHORTCARD): CARDINAL;
PROCEDURE Close<Parser> ;

PROCEDURE TokenName (Token: CARDINAL; VAR Name: ARRAY OF CHAR);

END <Parser>.

- The procedures <Parser> andager>2 are the generated parsing routines. The argument Start-
Symbol of <Parser>2 specifies the start symbol to be used for parsingludshas to be one of
the named constants yy<start_symbol_The procedure <Parser> uses as start symbol the start
symbol defined first in the grammar or the first nonterminal if no start symbeds than
defined. Theprocedures return the number of syntax errégseturn value of zero indicates a
syntactically correct input.

- For every nonterminal that is specified as start symbol a named constant is defined whose nam
consists of the name of the nonterminal with the prefix 'yifiese constants areg arguments
for the procedure <Parser>2.

- For every terminal in the grammar a named constant is defined if optowefixis gven. The
names for the constants consist of a prefix and the name of the terminal if this is possible. Th
prefix defaults to 't_".

- The contents of the tget code section named BEGIN is put into a procedure called
Begin<Rarser>. This procedure is called automatically upgsnyeinvocation of the procedure
<Parser>. It can also be called explicitly by the user.

- The contents of the tget code section named CLOSE is put into a procedure called
Close<Parser>. It has to be called explicitly by the user when necessary.

- The variable yyDebug controls the trace of parsing actions. This trace is usefullggidgba
parserA trace is printed when the preprocessor divecti

define YYDEBUG
is included in the GLOBAL section and the variable yyDebug is set to TRUE.

Lark 56

- The procedure dkenName provides a mapping from the internal representation of tokens to the
external representation as/gn in the grammar specification. It maps integers to strings and it is
used for example by the parser to provide expresaessages for the error handling module.

The internal parser interface consists of the following objects:

define yylnitStackSize 100

define yylnitBufferSize 100
define YYACCEPT

define YYABORT

VAR yyNonterminal 'y ySymbolRange;
VAR yyTrace : 10.tFile; (* := 10.StdOutput; *)
VAR BufferPosition: INTEGER,;

PROCEDURE SemActions (Actions : BOOLEAN);

PROCEDURE ErrorMessages (Messages: BOOLEAN);

PROCEDURE MemoryClear (Position: INTEGER);

PROCEDURE GetLookahead (k: INTEGER): INTEGER,;

PROCEDURE GetAttribute (k: INTEGER; VAR Attribute: <Scanner>.tScanAttribute);

PROCEDURE BufferOn (Actions, Messages: BOOLEAN): INTEGER,;
PROCEDURE BufferOff (): INTEGER,;
PROCEDURE ReParse (StartSymbol: INTEGER; From, To: INTEGER,;

Actions, Messages: BOOLEAN): INTEGER,;
PROCEDURE BufferClear ();

define TOKENOP

define BEFORE_TRIAL
define AFTER_TRIAL

define ERROR

define NO_RECOVER

Some of the objects are implemented differently using macros instead of functions.

- The initial size of the parser stack is defined by the value of the preprocessor symbol yyinit-
StackSize with a default of 100. The stack size is increased automatically when nedéssary
initial stack size can be changed by including a preprocessor wirécthe GLOBAL section
such as:

define yylnitStackSize 200

- The initial size of the tadn huffer for trial parsing and reparsing is defined by the value of the
preprocessor symbol yyInitBigirSize with a default of 100. Theuffer size is increased auto-
matically when necessaryhe initial uffer size can be changed by including a preprocessor
directive in the GLOBAL section such as:

define yylnitBufferSize 50

- The statement YAXCCEPT can be used in semantic actions. It terminates the cuwecation
of the internal parsing procedure with the current count of errors.

- The statement YXBORT can be used in semantic actions. It terminates the currataiton of
the internal parsing procedure with the current count of errors increased by one.

- The variable yyNonterminal holds the nonterminal of the left-hand side of the rule which has
been reduced last. Thisnable can be accessed in semantic predicates or in semantic actions
and this may be of good use in determining whether a trial parse needs to be doreiable v

Lark 57

takes on alues of enumerated constants generatedviy eonterminal whose names are con-
structed by prefixing the name of the nonterminal yytNT. Example:

yyNTdeclaration
yyNTstatement
yyNTexpression

The variable yyTrace selects the file used for output of the trace informatiendefault alue
is stdout. This value can be changed by assignments in the BEGIN section or in semantic action

The procedure SemActions controls thecaition of conditional semantic actions without a
selection mask (see section 6.3The values of the argument Actions mean: true = enallés f
= disable. Theselection remains valid until awecall of the procedure or the termination of the
current ivocation of the internal parsing procedure.

The procedure ErrorMessages controls the reporting of error messages by theTparsaiues

of the agument Messages mean: true = enable, false = disable. The selection remains valid unt
a rew all of the procedure or the termination of the currembgation of the internal parsing
procedure.

The procedure MemoryClear is useful when the option -b is set to instruct the generated parser 1
memorize and reuse the results ofvpas trial parses. These results are stored at the positions
in the token bffer where trial parses started. A call of MemoryClear clears a memorized result at
the position in the tokenulffer given by the argument Position. The values for the position can
be obtained from the variable BufferPosition (see below).

The function GetLookahead returns the k-th lookahead token.

The procedure GetAttrilie returns via its second argument called Attribute the additional prop-
erties or attributes of the k-th lookahead token.

The function BufferOn switches the parser to the madgeb This is only possible if the parser

is in the mode standard, otherwise the mode remains unchampedarguments Actions and
Messages control thexecution of semantic actions and the reporting of error messages in the
same way as the procedures SemActions and ErrorMessBigedunction returns the position

of the current lookahead token in the token buffer.

The function BuferOff switches the parser to the mode standard. This is only possible if the
parser is in the modeutier, otherwise the mode remains unchanged. The selection for Actions
and Messages is reset to the state before the call tdrBuaf Thefunction returns the position

of the current lookahead token in the token buffer.

The variable BufferPosition holds the position of the current lookahead tokhe token dfer.
Its value can be read atyatime while parsing in the modeutber in order to request positions of
arbitrary tokens in the token buffer.

The function ReParse initiates parsing in the mode reparse using the start symbol StartSymbc
The contents of the tek huffer from (including) luffer position From up to (excludinguffer
position 1 is parsed again according to the start symbol. Theraents Actions and Messages
control the gecution of semantic actions and the reporting of error messages in the same way a:
the procedures SemActions and ErrorMessadgdse function returns the number of syntax
errors found during its wocation.

The procedure BiérClear signals that the contents of the tokeffelb can be deleted. The
tokens will not be deleted immediately but when it is safe to do this. It is important to tell the
parser when uiffered tokens can be deleted, because otherwise all remaining ingns teitl be

Lark 58

buffered. Thereforevery call of BufferOn should be accompanied by a call of BufferClear.

- The macro DKENOP can be used taeeute a piece of user code just beforergtoken is con-
sumed by the parserhis feature works only if the parser uses the tokdfeb This is the case
if trial parsing is actiated or one of the following routines is used: GetLookahead, Getéttib
BufferOn, BuferOff, ReParse, or BidrClear Then the macro isxecuted &ery time a token is
consumed either the first time coming from the source or repeatedly coming from theuisken b
fer. The macro is located before the return statement of a function that provides the parser witl
tokens. The current token is stored in the local variable yyToken:

TOKENOP
RETURN yyToken;

- The macro BEFORE_TRIAL can be used t@®aite statements before the start vére trial
parsing.

The macro AFTER_TRIAL can be used t@eute statements after the end wérg trial parsing.
For example one application is to undo side-effects of trial parsing that fails.

The macro ERROR can be used xeceite statements in case of a syntax error beforextivele
tion of the builtin error recgery. Example:

define ERROR 10.WriteS (StdError, "syntax error at "); \
Position.WritePosition (StdError, Attribute.Position);

If the preprocessor symbol NO_RECOVER is defined thenuittinkerror recoery is excluded
from the generated parseFhe parser will terminate upon the first syntax error.

8.4.2. Scanneinterface
A generated parser needs the following objects from a module called Scanner:

DEFINITION MODULE <Scanner>;
IMPORT Position;

TYPE tScanAttribute = RECORD Position: Position.tPosition; END;
VAR Attribute . t ScanAttribute;

PROCEDURE ErrorAttribute (Token: CARDINAL; VAR Attribute: tScanAttribute);
PROCEDURE GetToken (: INTEGER;

END <Scanner>.

- The procedure Getken is repeatedly called by the parser in order toveeeream of tolens.
Every call has to return the internal integer representation of the "nexti.tokheend of the
input stream (end of file) is indicated by a value of zdroe integer values returned by the pro-
cedure Getdken hae lie in a range between zero and the maximal value defined in the gram-
mar. This condition is not cheekl by the parser and values outside of this range may lead to
undefined behaviour.

- Additional properties or attributes of ks are communicated from the scanner to the parser via
the global variable Attribute. For tokens with additional propertiesdikg. mmbers or identi-
fiers, the procedure Geailen has to supply the value of this variable as siféstefThe type of
this variable can be chosen freely as long as it is an extension of the record type tScanAttribute.

- The variable Attribute must kia a feld called Position which describes the source coordinates of
the current token. It has to be computed as sidetedf the procedure Gailken. In case of

Lark 59

syntax errors this field is passed as argument to the error handling routines.

- The type tRrsAttribute must be a record type with at least one field called Scan of type tScanAt-
tribute. Additional properties or attributes of ¢ms are transferred from the globariable
Attribute to this field. See section 2.9 for an example.

- During automatic error repair a parser may insert tokens. In this case the parser calls the proc:
dure ErrorAttribute to ask for the additional properties or atte of an inserted token which is
given by the argument dken. Theprocedure should return in the secongluanent called pAt-
tribute default values for the additional properties of this token.

Example:

PROCEDURE ErrorAttribute (Token: INTEGER; VAR pAttribute: tScanAttribute);
BEGIN

pAttribute.Position ;= Attribute.Position;

CASE Token OF

| * 1 dent *) 1: pAttribute.ldent := Noldent;
| * I nteger*) 2: pAttribute.Integer := 0 ;

| * R eal *) 3: pAttribute.Real =0.0 ;
ELSE

END;

END ErrorAttribute;

8.4.3. Error Interface

In case of syntax errors, the generated parser calls procedures in orderd® ipformation about

the position of the errpthe set of epected tokens, and the behaviour of the repair and/egco
mechanism. These procedures areveoiently implemented in a separate error handling module
called Errors. The information provided by the parser may be stored or processed in an arbitrar
way. A prototype error handling module is contained in the libReysdfiles reuse/src/Errors.md

and reuse/src/Errors.mi) whose procedures immediately print the information passed as arguments

Lark 60

DEFINITION MODULE Errors;

FROM SYSTEM IMPORT ADDRESS;
FROM Position IMPORT tPosition;

CONST
SyntaxError =
ExpectedTokens =
RestartPoint =
Tokenlnserted =
TokenFound =

(* error codes *)

Error = (* error classes *)
Repair =

Information =

String =
Array =

PROCEDURE ErrorMessage (ErrorCode, ErrorClass: CARDINAL; Position: tPosition);

PROCEDURE ErrorMessagel (ErrorCode, ErrorClass: CARDINAL; Position: tPosition;
InfoClass: CARDINAL; Info: ADDRESS);

PROCEDURE Message (ErrorText: ARRAY OF CHAR,; ErrorClass: CARDINAL;
Position: tPosition);

(* i nfo classes *)

ON NOOW O WNPE

END Errors.

- There are fig messages a generated parser may repory. dkesncoded by the first group of the

above onstant definitions. The messages are classified according to the second group of consta

definitions.

- The procedure ErrorMessage is used by the parser to report a message, its class, and its sou

position. It is used for syntax errors and rexyp locations (restart points).
- The procedure ErrorMessagel isedlikhe procedure ErrorMessage with additional Information.

The latter is characterized by a class or type indication (InfoClass) and an untyped pointer (Info)

Two types of additional information are used by the pai@ering error repajrtokens might be
inserted. These are reported one by one arnydateeclassified as Array (ARRAOF CHAR). At
evay syntax error the set ofdd or expected tokens is reported using the classification String
(tString).

- The procedure Message is similar to the procedure ErrorMessage. The first argument specifies
message text instead of an error code. This procedure might be called only if the reparsing fee

ture is used.

8.4.4. Rarser Driver

A main program is necessary for the test of a generated .palngeparser generator can yide a
minimal main program in the file eilser>Drvmi which can sem as est drver. It has the folleving
contents:

Lark 61

MODULE <Parser>Drv;

FROM Parser IMPORT <Parser>, Close<Parser>;
FROM IO IMPORT CloselO;
BEGIN

IF <Parser> () = 0 THEN END;
Close<Parser>;
CloselO;

END <Parser>Drv.

8.5. Ada

8.5.1. Rarser Interface

The parser interface consists ofotparts: While the objects specified in thaegnal interface can
be used from outside the pardbe objects of the internal interface can be used only within a lan-
guage description. The external parser interface in the file <Parser>.ads has the following contents

package <Parser> is

-- named constants for start symbols
yy<start_symbol 1> : constant Integer := 1;
yy<start_symbol 2> : constant Integer := 2;

-- named constants for nonterminals

yyNT<nonterminal_1> : constant Integer := 71;
yyNT<nonterminal_2> : constant Integer := 72;

yyDebug . Boolean := False;

procedure Beginparser ;

function <Parser> return Integer;

function <Parser>2 (yyStartSymbol: Integer) return Integer;
procedure Closeparser ;

function TokenName (Token: Integer) return String;

end <Parser>;

- The procedures <Parser> andasder>2 are the generated parsing routines. The argument Start-
Symbol of <Parser>2 specifies the start symbol to be used for parsinrguttshas to be one of
the named constants yy<start_symbol_The procedure <Parser> uses as start symbol the start
symbol defined first in the grammar or the first nonterminal if no start symbeds than
defined. Theprocedures return the number of syntax errégeturn value of zero indicates a
syntactically correct input.

- For every nonterminal that is specified as start symbol a nhamed constant is defined whose nam
consists of the name of the nonterminal with the prefix 'yijiese constants areg arguments
for the procedure <Parser>2.

- For every nonterminal a named constant is defined whose name consists of the name of the nor
terminal with the prefix 'yyNT".

- The contents of the et code section named BEGIN is put into a procedure called
Begin<Rarser>. This procedure is called automatically upaanyeinvocation of the procedure
<Parser>. It can also be called explicitly by the user.

Lark 62

- The contents of the tget code section named CLOSE is put into a procedure called
Close<Parser>. It has to be called explicitly by the user when necessary.

- The variable yyDelng controls the trace of parsing actions. This trace is useful for debugging a
parserA trace is printed when the preprocessor divecti

define YYDEBUG
is included in the GLOBAL section and the variable yyDebug is set to true.

- The procedure dkenName provides a mapping from the internal representation of tokens to the
external representation as/gn in the grammar specification. It maps mes to strings and it is
used for example by the parser to provide expresaessages for the error handling module.

The internal parser interface consists of the following objects:

define yylnitStackSize 100

define yylnitBufferSize 100
define YYACCEPT

define YYABORT

yyNonterminal : Integer;
BufferPosition: Integer;

procedure SemActions (Actions : Boolean);
procedure ErrorMessages (Messages: Boolean);
procedure MemoryClear (Position: Integer);

function GetLookahead (k: Integer) return Integer;

procedure GetAttribute (k: Integer; Attribute: out <Scanner>.tScanAttribute);
procedure BufferOn (Actions, Messages: Boolean) return Integer;
procedure BufferOff return Integer;

procedure ReParse (StartSymbol: Integer; From, To: Integer;

Actions, Messages: Boolean) return Integer;
procedure BufferClear
procedure yyOpenTrace (FileName: String);

define TOKENOP

define BEFORE_TRIAL
define AFTER_TRIAL

define ERROR

define NO_RECOVER

Some of the objects are implemented differently using macros instead of functions.

- The initial size of the parser stack is defined by thlkeles of the preprocessor symbol yylnit-
StackSize with a default of 100. The stack size is increased automatically when nedéssary
initial stack size can be changed by including a preprocessor wirécthe GLOBAL section
such as:

define yylnitStackSize 200

- The initial size of the tokenuffer for trial parsing and reparsing is defined by takie of the
preprocessor symbol yylnitBufferSize with a default of 100. Tinéeb size is increased auto-
matically when necessaryhe initial uffer size can be changed by including a preprocessor
directive in the GLOBAL section such as:

define yylnitBufferSize 50

Lark 63

The statement YXCCEPT can be used in semantic actions. It terminates the cumwecation
of the internal parsing procedure with the current count of errors.

The statement YABORT can be used in semantic actions. It terminates the curreaition of
the internal parsing procedure with the current count of errors increased by one.

The \ariable yyNonterminal holds the nonterminal of the left-hand side of the rule which has
been reduced last. Thisnable can be accessed in semantic predicates or in semantic actions
and this may be of good use in determining whether a trial parse needs to be doreiable v
takes on values of enumerated constants generateddyr monterminal whose names are con-
structed by prefixing the name of the nonterminal yytNT. Example:

yyNTdeclaration
yyNTstatement
yyNTexpression

The procedure yyOpemdce selects the file used for output of the trace information. Thealtlef
value is Text_lo.Standard_Output. This value can be changed by calls of yy@uenih the
BEGIN section or in semantic actions.

The procedure SemActions controls thecaition of conditional semantic actions without a
selection mask (see section 6.3The values of the argument Actions mean: true = enallts f
= disable. Theselection remains valid until awecall of the procedure or the termination of the
current ivocation of the internal parsing procedure.

The procedure ErrorMessages controls the reporting of error messages by theTparsaiues

of the agument Messages mean: true = enable, false = disable. The selection remains valid unt
a rew all of the procedure or the termination of the currembgation of the internal parsing
procedure.

The procedure MemoryClear is useful when the option -b is set to instruct the generated parser 1
memorize and reuse the results ofvpas trial parses. These results are stored at the positions
in the token bffer where trial parses started. A call of MemoryClear clears a memorized result at
the position in the tokenuffer given by the argument Position. The values for the position can
be obtained from the variable BufferPosition (see below).

The function GetLookahead returns the k-th lookahead token.

The procedure GetAttrilie returns via its second argument called Attribute the additional prop-
erties or attributes of the k-th lookahead token.

The function BufferOn switches the parser to the madgeb This is only possible if the parser

is in the mode standard, otherwise the mode remains unchampedarguments Actions and
Messages control thexecution of semantic actions and the reporting of error messages in the
same way as the procedures SemActions and ErrorMessBigedunction returns the position

of the current lookahead token in the token buffer.

The function BuferOff switches the parser to the mode standard. This is only possible if the
parser is in the modeutfer, otherwise the mode remains unchanged. The selection for Actions
and Messages is reset to the state before the call tfrBuaf Thefunction returns the position

of the current lookahead token in the token buffer.

The variable BufferPosition holds the position of the current lookahead tokhe token Udfer.
Its value can be read atyatime while parsing in the modeutber in order to request positions of
arbitrary tokens in the token buffer.

Lark 64

- The function ReParse initiates parsing in the mode reparse using the start symbol StartSymbc
The contents of the tek huffer from (including) luffer position From up to (excludinguffer
position 1 is parsed again according to the start symbol. Theraents Actions and Messages
control the gecution of semantic actions and the reporting of error messages in the same way a:
the procedures SemActions and ErrorMessadgdse function returns the number of syntax
errors found during its wocation.

- The procedure BidrClear signals that the contents of the tokeffeb can be deleted. The
tokens will not be deleted immediately but when it is safe to do this. It is important to tell the
parser when uiffered tokens can be deleted, because otherwise all remaining ingns teil be
buffered. Thereforevery call of BufferOn should be accompanied by a call of BufferClear.

- The macro DKENOP can be used taezute a piece of user code just beforerg token is con-
sumed by the parserhis feature works only if the parser uses the tokdfeb This is the case
if trial parsing is actiated or one of the following routines is used: GetLookahead, Getéttrib
BufferOn, BuferOff, ReParse, or BtdrClear Then the macro isxecuted &ery time a token is
consumed either the first time coming from the source or repeatedly coming from theuisken b
fer. The macro is located before the return statement of a function that provides the parser witl
tokens. The current token is stored in the local variable yyToken:

TOKENOP
return yyToken;

The macro BEFORE_TRIAL can be used teaite statements before the start wére trial
parsing.

The macro AFTER_TRIAL can be used te@eute statements after the end oérg trial parsing.
For example one application is to undo side-effects of trial parsing that fails.

- The macro ERROR can be used xeceite statements in case of a syntax error beforextoe-e
tion of the builtin error recgery.

If the preprocessor symbol NO_RECOVER is defined thenuittnkerror receery is excluded
from the generated parserhe parser will terminate upon the first syntax error.

8.5.2. Scanneinterface
A generated parser needs the following objects from a module called Scanner:

with Position;

package <Scanner> is

type tScanAttribute is record Position: Position.tPosition; end record;
Attribute : tScanAttribute;

procedure ErrorAttribute (Token: Integer; Attribute: out tScanAttribute);

function GetToken return Integer;

end <Scanner>;

- The procedure Getken is repeatedly called by the parser in order toveaeream of tolens.
Every call has to return the internal integer representation of the "nexti.tokheend of the
input stream (end of file) is indicated by a value of zd8ree integer values returned by the pro-
cedure Getdken hae 1 lie in a range between zero and the maximal value defined in the gram-
mar. This condition is not cheekl by the parser and values outside of this range may lead to
undefined behaviour.

Lark 65

- Additional properties or attributes of ks are communicated from the scanner to the parser via
the global variable Attribute. For tokens with additional propertiesdikg. mmbers or identi-
fiers, the procedure Geailen has to supply the value of this variable as siféstefThe type of
this variable can be chosen freely as long as it is an extension of the record type tScanAttribute.

- The variable Attribute must lia a feld called Position which describes the source coordinates of
the current token. It has to be computed as sifd¢etedf the procedure Geailken. In case of syn-
tax errors this field is passed as argument to the error handling routines.

- The type tRrsAttribute must be a record type with at least one field called Scan of type tScanAt-
tribute. Additional properties or attributes of ¢mls are transferred from the globariable
Attribute to this field. See section 2.9 for an example.

- During automatic error repair a parser may insert tokens. In this case the parser calls the proc:
dure ErrorAttribute to ask for the additional properties or atte of an inserted token which is
given by the argument dken. Theprocedure should return in the seconguanent called pAt-
tribute default values for the additional properties of this token.

Example:

procedure ErrorAttribute (Token: Integer; pAttribute: out tScanAttribute) is
begin

pAttribute.Position := Attribute.Position;

case Token is

when 1 => -- [dent

pAttribute.ldent.ldent = Noldent;
when 2 => -- Integer
pAttribute.IntConst.Value := 0

when 3 => -- Real
pAttribute.RealConst.Value := 0.0
when others => null;
end case;
end ErrorAttribute;

8.5.3. Error Interface

In case of syntax errors, the generated parser calls procedures in orderd® ipformation about

the position of the errpthe set of epected tokens, and the behaviour of the repair and/esco
mechanism. These procedures arevegiently implemented in a separate error handling module
called Errors. The information provided by the parser may be stored or processed in an arbitrar
way. A prototype error handling module is contained in the libReysdfiles reuse/ada/errors.ads

and reuse/ada/errors.adb) whose procedures immediately print the information passed as argumen

Lark 66

with Position; use Position;

package Errors is

SyntaxError : constant Integer := 1 ; -- error codes
ExpectedTokens : constant Integer := 2 ;

RestartPoint : constant Integer := 3 ;

Tokenlnserted constant Integer := 4 ;

TokenFound . constant Integer := 9 ;

Error : constant Integer := 3 ; -- error classes
Repair : constant Integer :=5;

Information : constant Integer := 7 ;

cString : constant Integer := 7 ; -- info classes

procedure ErrorMessage (ErrorCode, ErrorClass: Integer; Position: tPosition);

procedure ErrorMessagel (ErrorCode, ErrorClass: Integer; Position: tPosition;
InfoClass: Integer; Info: Address);

procedure Message (ErrorText: String; ErrorClass: Integer; Position: tPosition);

end Errors;

- There are fig messages a generated parser may repory. dkesncoded by the first group of the
above onstant definitions. The messages are classified according to the second group of consta
definitions.

- The procedure ErrorMessage is used by the parser to report a message, its class, and its sou
position. It is used for syntax errors and rexyp locations (restart points).

- The procedure ErrorMessagel isedlikhe procedure ErrorMessage with additional Information.
The latter is characterized by a class or type indication (InfoClass) and an untyped pointer (Info)
During error repajrtokens might be inserted. These are reported one by one gratéheassi-
fied as cString (String) At every syntax error the erroneous token and the set gd ler
expected tokens is reported using the classification cString, too.

- The procedure Message is similar to the procedure ErrorMessage. The first argument specifies
message te instead of an error code. This procedure might be called only if the reparsing fea-
ture is used.

8.5.4. Rarser Driver

A main program is necessary for the test of a generated .paingeparser generator can provide a
minimal main program in the file sFser>dnadb which can seevas ést drver. It has the follev-
ing contents:

with <Parser>; use <Parser>;
procedure <Parser>Drv is
ErrorCount : Integer;

begin
ErrorCount := <Parser>.parser;
Close<Parser>;

end <Parser>Drv;

8.6. Eiffel

Lark 67

8.6.1. Rarser Interface

The parser interface consists ofotparts: While the objects specified in the external interface can
be used from outside the parshie objects of the internal interface can be used only within a lan-
guage description. The file <Parser>.e contains the claaser® which offers the following fea-
tures of the external interface:

class <Parser>

creation make

feature

yy<start_symbol_1>: INTEGER is 1
yy<start_symbol_1>: INTEGER is 2

make is

SetDebug (value: BOOLEAN) is

TokenName (index: INTEGER): STRING is
BeginParser is

Parser : INTEGER is

Parser2 (StartSymbol: INTEGER): INTEGER is
CloseParser is

The procedure makinstantiates a parser object and performs the necessary initializaons.
example, the tables are read in from a file named <Parser>.txt.

The procedures Parser and Parser2 are the generated parsing rditenasgument StartSym-

bol of Parser2 specifies the start symbol to be used for parsing. Its value has to be one of th
named constants yy<start_symbol_i>. The procedarseP uses as start symbol the start sym-
bol defined first in the grammar or the first nonterminal if no start symbeéskean defined.

The procedures return the number of syntax errArseturn \alue of zero indicates a syntacti-
cally correct input.

For every nonterminal that is specified as start symbol a named constant is defined whose nam
consists of the name of the nonterminal with the prefix 'yijiese constants areg arguments
for the procedure Parser2.

The contents of the target code section named BEGIN is put into a procedure cgiltdRhBser.
This procedure has to be called by the user when necessary.

The contents of the tget code section named CLOSE is put into a procedure called
Close@Parselt has to be called explicitly by the user when necessary.

The procedure SetDeb controls the trace of parsing actions. This trace is useful fogdety
a parser A trace is printed only if the parser class is compiled with the switch debug enabled and
after the procedure SetDebug has been called with the argument TRUE.

The procedure dkenName provides a mapping from the internal representation of tokens to the
external representation as/gn in the grammar specification. It maps mes to strings and it is
used for example by the parser to provide expresaessages for the error handling module.

The internal parser interface consists of the following objects:

Lark 68

define YYACCEPT
define YYABORT

yyNonterminal INTEGER

BufferPosition : INTEGER

yyTrace : rFILE

SemActions (Actions : B OOLEAN)

ErrorMessages (Messages: BOOLEAN)

MemoryClear (Position: INTEGER)

GetLookahead (k: INTEGER): INTEGER

GetAttribute (k: INTEGER): ScanAttribute

BufferOn (Actions, Messages: BOOLEAN): INTEGER
BufferOff : INTEGER

ReParse (StartSymbol: INTEGER; From, To: INTEGER,;

Actions, Messages: BOOLEAN): INTEGER

BufferClear

define TOKENOP

define BEFORE_TRIAL
define AFTER_TRIAL

define ERROR

define NO_RECOVER

Some of the objects are implemented differently using macros instead of functions.

The statement YXCCEPT can be used in semantic actions. It terminates the cumwecation
of the internal parsing procedure with the current count of errors.

The statement YABORT can be used in semantic actions. It terminates the curreaition of
the internal parsing procedure with the current count of errors increased by one.

The \ariable yyNonterminal holds the nonterminal of the left-hand side of the rule which has
been reduced last. Thisnable can be accessed in semantic predicates or in semantic actions
and this may be of good use in determining whether a trial parse needs to be doreiable v
takes on values of enumerated constants generateddyr monterminal whose names are con-
structed by prefixing the name of the nonterminal yytNT. Example:

yyNTdeclaration
yyNTstatement
yyNTexpression

The variable yyTace selects the file used for output of the trace information. The dedifudt v
is stdout. This value can be changed by assignments in the BEGIN section or in semantic action

The procedure SemActions controls thecaition of conditional semantic actions without a
selection mask (see section 6.3.). The values of therant Actions mean: true = enablasé

= disable. Theselection remains valid until awecall of the procedure or the termination of the
current ivocation of the internal parsing procedure.

The procedure ErrorMessages controls the reporting of error messages by theTparsaiues
of the argument Messages mean: true = enable, false = disable. The selection r@idainslv
a rew all of the procedure or the termination of the currembgation of the internal parsing
procedure.

The procedure MemoryClear is useful when the option -b is set to instruct the generated parser 1
memorize and reuse the results of previous trial pafBesse results are stored at the positions
in the token bffer where trial parses started. A call of MemoryClear clears a memorized result at

Lark 69

the position in the tokenulffer given by the argument Position. The values for the position can
be obtained from the variable BufferPosition (see below).

The function GetLookahead returns the k-th lookahead token.

The procedure GetAttribute returns via its second argument calledusdttine additional prop-
erties or attributes of the k-th lookahead token.

The function BuflerOn switches the parser to the modédy. This is only possible if the parser

is in the mode standard, otherwise the mode remains unchampedarguments Actions and
Messages control thexecution of semantic actions and the reporting of error messages in the
same way as the procedures SemActions and ErrorMessBigedunction returns the position

of the current lookahead token in the token buffer.

The function BuferOff switches the parser to the mode standard. This is only possible if the
parser is in the modeutfer, otherwise the mode remains unchang&te selection for Actions

and Messages is reset to the state before the call tdrBuaf Thefunction returns the position

of the current lookahead token in the token buffer.

The variable BuerPosition holds the position of the current lookahead token in the token b
Its value can be read atyatime while parsing in the modeutier in order to request positions of
arbitrary tokens in the token buffer.

The function Re&rse initiates parsing in the mode reparse using the start symbol StartSymbol.
The contents of the tokemnufber from (including) lnffer position From up to eluding) huffer
position is parsed again according to the start symbol. The arguments Actions and Message:
control the gecution of semantic actions and the reporting of error messages in the same way a:
the procedures SemActions and ErrorMessadgdse function returns the number of syntax
errors found during its vocation.

The procedure BufferClear signals that the contents of the takiéer lwan be deleted. The
tokens will not be deleted immediately but when it is safe to do this. It is important to tell the
parser when uiffered tolens can be deleted, because otherwise all remaining input tokens will be
buffered. Thereforevery call of BufferOn should be accompanied by a call of BufferClear.

The macro TOKENOP can be used xeaite a piece of user code just beforergtoken is con-

sumed by the parserhis feature works only if the parser uses the tokdfeb This is the case
if trial parsing is actiated or one of the following routines is used: GetLookahead, Getéttrib
BufferOn, BuferOff, ReParse, or BtdrClear Then the macro isxecuted &ery time a token is

consumed either the first time coming from the source or repeatedly coming fromethdatibk

fer. The macro is located at the end of a function that provides the parser with tokens.

TOKENOP

The macro BEFORE_TRIAL can be used teaite statements before the start wérg trial
parsing.

The macro AFTER_TRIAL can be used t@eute statements after the end oérg trial parsing.
For example one application is to undo side-effects of trial parsing that fails.

The macro ERROR can be used xeceite statements in case of a syntax error beforexdoe-e
tion of the builtin error reocgery.

If the preprocessor symbol NO_RECOVER is defined thenuittnkerror receery is excluded
from the generated parserhe parser will terminate upon the first syntax error.

Lark 70

- Subclasses of the predefined support class Atiilshould be specified in order to define the
attributes needed for nonterminal symbols. See section 2.9 for an example.

8.6.2. Scanneinterface
A generated parser needs the following features from a class called <Scanner>:

class <Scanner>

EofToken : INTEGER is O

Attribute : ScanAttribute

BeginScanner is

GetToken : INTEGER is

GetWord : STRING is

ErrorAttribute (Token: INTEGER): ScanAttribute is
SetAttribute (value: ScanAttribute) is

- The procedure makinstantiates a scanner object and performs the necessary initializations.

- The procedure Getken is repeatedly called by the parser in order toveeeream of tolens.
Every call has to return the internal integer representation of the "nexti.tdke end of the
input stream (end of file) is indicated by a value of zero. The inted@es/returned by the pro-
cedure Getdken hae 1 lie in a range between zero and the maxinaller defined in the gram-
mar. This condition is not checked by the parser aalles outside of this range may lead to
undefined behaviour.

- Additional properties or attributes of ks are communicated from the scanner to the parser via
the feature Attribute. For tokens with additional properties ékg. mmbers or identifiers, the
procedure Getdken has to supply thealue of this feature as side-effect. The class of this feature
can be chosen freely as long as it is a subclass of the class ScanAttribute.

- The procedure SetAttribute is needed by the parser to store values in the featurgeAtthis is
necessary during backtracking in order to correctly backup to previous tokens.

- During automatic error repair a parser may insert tokens. In this case the parser calls the proc:
dure ErrorAttribute to ask for the additional properties or atte of an inserted token which is
given by the argument dken. The procedure should return default values for the additional prop-
erties of this token.

Example:
ErrorAttribute (Token: INTEGER): ScanAttribute is
local
IdentAttr : IdentAttribute;
IntegerAttr : IntegerAttribute;
RealAttr : RealAttribute;
do

inspect Token
when 1: !l IdentAttr.make (Noldent); Result := IdentAttr

when 2: !l IntegerAttr.make (0) ; Result ;= IntegerAttr;
when 3: !l RealAttr.make (0.0) ; Result ;= RealAttr ;
else I Result.make;
end;

Result.SetPosition (yyScanAttribute.Line, yyScanAttribute.Column);
end;

Lark 71

8.6.3. Error Interface

In case of syntax errors, the generated parser calls procedures in orderd® ipformation about

the position of the errpthe set of epected tokens, and the behaviour of the repair and/egco
mechanism. These procedures areveoiently implemented in a separate error handling class
called Errors. The information provided by the parser may be stored or processed in an arbitrar
way. The parser generator can provide a prototype error handling class in the file errors.e whos
procedures immediately print the information passed@swants. Thigrror handling class is pro-
vided when option -f is set (see also section: 7.4.5).

There are s&n messages a generated parser may report: deeencoded by the first group of
the constant definitions. The messages are classified according to the second group of conste
definitions.

The procedure makinitializes an Errors object.

The procedure ErrorMessage is used by the parser to report a message, its class, and its sou
position. It is used for syntax errors and rexyp locations (restart points).

The procedure ErrorMessagel isdikhe procedure ErrorMessage with additional Information.
The latter is characterized by a class indication (InfoClass) and an arbitrary objectDimfio)y
error repair tokens might be insertethese are reported one by one ang #re classified as
IsString. Atevey syntax error the set ofgd or expected tokns is reported using the classifica-
tion IsString, too.

The procedure Message is similar to the procedure ErrorMessage. The first argument specifies
message ¢ instead of an error code. This procedure might be called only if the reparsing

class Errors

creation make

feature

SyntaxError : INTEGER is unique -- error codes
ExpectedTokens : INTEGER is unique

RestartPoint : INTEGER is unique

Tokenlnserted INTEGER is unique

WrongParseTable : INTEGER is unique

TokenFound . INTEGER is unique

FoundExpected : INTEGER is unique

Fatal : INTEGER is unique -- error classes

Error : INTEGER is unique

Repair : INTEGER is unique

Information : INTEGER is unique

IsString : INTEGER is unique -- info classes

BRIEF . BOOLEAN

FIRST : BOOLEAN

TRUNCATE : BOOLEAN

make is

ErrorMessage (ErrorCode, ErrorClass, Line, Column: INTEGER) is
ErrorMessagel (ErrorCode, ErrorClass, Line, Column, InfoClass: INTEGER,;

Info: ANY) is

Message (ErrorText: STRING; ErrorClass: INTEGER; Position: Position) is

Lark 72

feature is used.

8.6.4. Rarser Driver

A main program is necessary for the test of a generated .plingeparser generator can yide a
minimal main class in the file «liser>dre which can seeras est drver. It has the following con-
tents:

class <Parser>Drv

creation main

feature
main is
local
Parser : Parser
ErrorCount: INTEGER
do

Il Parser.make
Parser.BeginParser
ErrorCount := Parser.Parser
Parser.CloseParser

end

end

8.6.5. SupportClasses

A parser generated in the language Eiffel needsralesupport classes which are provided the
directory reuse/eiffel. These classes are:

Attribute
ScanAttribute
Errors
Position

rFile

rSystem

The classes can be found in files whose names consist of the class name afid the Floé class
Attribute serves as a super class for classes that define the structure of ttesaftiithe S-attri-
bution mechanism ofark. The class ScanAttribute is a subclass of the class @rind it seres

as a super class for classes that define the attributes of tokens or terminals whose values are p
vided by the scannerAppropriate subclasses of these tdasses should be defined according to
the users nreed. Theclass Errors contains the procedures for error handling described inthe pre
ous section. It can also be adapted to the sise€d. Theclass Position represents the source posi-
tions of tolens. Theclasses rFile and rSystem are for the adaption to system specific properties.

9. Error Recovery

The parser generatomays includes data and algorithms for the handling of syntax errors in a gen-
erated parserThe error handling includes error r&eqy, error reporting, and error repailt is gen-
erated fully automatic - there are no instructions necessary tovachie behaiour. The error
messages use the terminal symbols of the gramitearefore the use of self explanatory identifiers
or strings for the denotation of terminals is recommended.

Lark 73

Lark uses the complete backtrack-free method described in [RRBABD, R6h82].Every
incorrect input is "virtually" transformed into a syntactically correct program with the consequence
of executing a "correct" sequence of semantic actions,. dilig has the adntage that the folo-
ing compiler phases l&kemantic analysis do not V& deal with syntax errors. The libraReuse
[Grod, Groe]provides a prototype error module callEdors which just prints messages as who
below. If an aher format or a different behaviour of the error handling module is desired, then it can
be adapted easily to the ideas of the.uBee body of the module contains three (C preprocessor)
variables that control the style of the error messages:

BRIEF summarizeyntax errors in one error message insteadvef@lemessages

FIRST reporonly the first error message on a line instead of all messages

TRUNCATE truncateadditional information for messages (such as the set of
expected symbols) to around 25 characters

Example: The following Pascal program contains sgntax errors:

program test (output);
begin

if (a = b] write (a;
end.

If all three preprocessor variables are undefined then the following messages are reported:

: Information token found N
. Information expected tokens: ,) = +-: <><=>=< >IN OR */ DIV MOD AND
: Repair token inserted :)

3, 13: Error syntax error

3, 13: Information token found o]

3, 13: Information expected tokens:) = + - <> <=>=< >IN OR */ DIV MOD AND
3, 15: Information restart point

3, 15: Repair token inserted :)

3, 15: Repair token inserted : THEN

3, 23: Error syntax error

3,23

3,23

3,23

If BRIEF is defined then this is compressed into liwes:

3, 13: Error found/expected :]/) =+ - <> <=>=< >IN OR */ DIV MOD AND
3, 23: Error found/expected : ;/,) =+-:<><=>=<>IN OR */ DIV MOD AND

If BRIEF and FIRST are defined then this results in just one line:

3, 13: Error found/expected :]/) =+ - <> <=>=< >IN OR */ DIV MOD AND
If BRIEF, FIRST, and TRUNCATE are defined then this one line becorwes ghorter:

3, 13: Error found/expected :]/) =+-<><=>=<>INOR*/ ...

In all of the abbreviated styles the information about restart points or inserét isksuppressed
and the messages reporting the found token and the set of expeetesl do& combined into one
message.

A syntax error is handled by the parser as follows:

- A syntax error is detected when the table of the parser does not indicate an action for the currel
vaues of the parser state and the lookahead token.

Lark 74

- The fact of a syntax error and its location are reported.
- The erroneous lookahead token is reported.

- All tokens that would be add continuation of the program at the current location are computed

and reported.

- All tokens that can be used to safely continue with parsing are computed. A minimal sequence ¢
tokens is skipped until one of these tokens is found. This token represents viegy/recation.

- The recwoery location or restart point is reported.

- Parsing continues in the so-called repair mode. The parsevdseds sual in this modexeept
that tokens are not requested from the scanmstead, a minimal sequence of tokens is synthe-
sized to repair the erroiThe parser stays in this mode until the token at theveegcdocation
can be accepted. The synthesized tokens are reported. The program cmded Bes repaired,
if the skipped tokens are replaced by the synthesized &g leaving repair mode, parsing
continues as usual.

10. Supportfor Debugging

Dehlugging of generated parsers is supported by a readable trace of the parsing actions and a grap

visualization.

10.1. Trace of Parsing Actions

A readable trace of the actionseeuted by the parser can be requested as an aid for debugging a
generated parsefhe trace is printed to a file selected by theable yyTrace which defaults to
standard output. It has to be enabled by a compile-time switch as well as by a run-time switch. Th
details are language dependent:

C

C++

Java

Modula-2

Ada

Eiffel

The parser must be compiled with the optioVYIDEBUG and the externalavi-
able <Parser>_Debug must be set to true (= 1).

The parser must be compiled with the optionYAX DEBUG and the member
yyDebug must be set to true (= 1).

The preprocessor direed # define YYDEBUG must be included in the
GLOBAL section and the variable yyDebug, which is exported by the class
<Parser>, must be set to true.

The preprocessor dires#® # define YYDEBUG must be included in the
GLOBAL section and the variable yyDebug, which is exported by the module
<Parser>, must be set to TRUE.

The preprocessor diree®e # define YYDEBUG must be included in the
GLOBAL section and the variable yyDebug, which xperted by the package
<Parser>, must be set to True.

Theclass parser must be compiled with the swiebugenabled and the proce-
dure SetDebug must be called with the argument TRUE.

For the eplanation of the trace we use the grammar from section 5.3. Suppose the input of
the generated parser is:

{
T (i);
T (i) ++;
f(x);

}

Lark

Then the following trace is printed:
| Position|State|Mod|Lev|Action |Terminal and Lookahead or Rule

1. 1,

2: 2,

3 2,

4. 2,

5 2,

6: 2,

7. 2,

8 2,

9 2,

10: 2,
11: 2,
trial action
12: 2,
13: 2,
14: 2,
trial action
15: 2,
16: 2,
17: 3,
18: 3,
19: 3,
20: 3,
21 2,
22: 2,
23: 2,
24: 2,
25: 2,
26: 2,
27 2,
trial action
final action
28: 2,
29: 2,
30: 2,
trial action
final action
31 2,
32: 2,
33: 3,
34: 3,
35. 3,
36: 3,
37: 3,
38: 3,
39: 3,
40: 3,
41: 3,
42: 3,
43: 3,
trial action
44: 3,
45: 3,
46: 3,
trial action
47: 3,
48: 3,
49: 3,
50: 3,
51: 3,
52: 3,
53: 3

©®

@

10:
10:
10:

Ahoo

Ahoo

~

~

o RA

2222~ AERRAR

RS R o

IS

10
10

14
14
11
11

10
10

14
14
11
11

10
10

14

14
11

18

O NN~NONDNO WER -

[ee]

ONN~NUOTOONDN

ONN~NOINDDNO O

oo

o

44444440 00n00nn nnon VOO onad-dd-4-44 44 Ad4-d44d4-44000nn

— = -

nnnn-H4-44

RPRRRPRRER

e

PR RRPRER

RPRRRPRRR

e

[

parse for predicate in line 23, lookahead: {
shift {, lookahead: IDENTIFIER
reduce declaration_list :

dynamic decision 1

p arse for predicate in line 31, lookahead: IDENTIFIER
r educe 1_declaration_Trial_1 :

s hift IDENTIFIER,
d ynamic decision 2
¢ heck predicate

r
r

lookahead: (

in line 50, result = 1

educe TYPEDEFname : | DENTIFIER

educe declaration_specifier : T YPEDEFname
s hift (, lookahead: IDENTIFIER
s hift IDENTIFIER, lookahead:)
r educe declarator 1 | DENTIFIER
s hift), lookahead: ;
r educe declarator ;' (' declarator’)y’
s hift ;, lookahead: IDENTIFIER
r educe declaration : 1 _declaration_Trial_1 declaration_specifier declarator ’;’
r educe O_intern : d eclaration

a ccept parse started at5

check predicate

inline 31, result = 1

reduce 1_declaration_Trial_1

shift IDENTIFIER,
dynamic decision 2
check predicate

lookahead: (

in line 50, result = 1

reduce TYPEDEFname : | DENTIFIER

reduce declaration_specifier

. T YPEDEFname

shift lookahead: IDENTIFIER

shift IDENTIFIER,
reduce declarator

lookahead:)
: | DENTIFIER

shift), lookahead: ;

reduce declarator

;' (' declarator’)y’

shift ;, lookahead: IDENTIFIER

reduce declaration

reduce declaration_list

dynamic decision 1

: 1 _declaration_Trial_1 declaration_specifier declarator ’;’
: d eclaration_list declaration

p arse for predicate in line 31, lookahead: IDENTIFIER
r educe 1_declaration_Trial_1

s hift IDENTIFIER,
d ynamic decision 2
¢ heck predicate

r
r

lookahead: (

in line 50, result = 1

educe TYPEDEFname : | DENTIFIER
educe declaration_specifier

. T YPEDEFname

s hift (| lookahead: IDENTIFIER

s hift IDENTIFIER, lookahead:)

r educe declarator : | DENTIFIER
s hift), lookahead: ++

r educe declarator

;' (' declarator’)y’

f ail parse started at 37

check predicate
reduce statement_list
shift IDENTIFIER,
dynamic decision 3

inline 31, result =0

lookahead: (

75

Lark 76

54: 3, 6: 18 S check predicate in line 50, result =1

55: 3, 6: 18 S reduce TYPEDEFname : | DENTIFIER

56: 3, 7: 13 S shift lookahead: IDENTIFIER

57: 3, 8 16 S shift IDENTIFIER, lookahead:)

58: 3, 8 19 S reduce expression : | DENTIFIER

59: 3, 10: 17 S shift), lookahead: ++

60: 3, 10: 17 S reduce expression . T YPEDEFname '(’ expression’)’
61: 3, 12: 12 S shift ++, lookahead: ;

62: 3, 122 12 S reduce expression : e xpression '++’

63: 4, 4. 12 S shift ;, lookahead: IDENTIFIER

64: 4, 4. 12 S reduce statement : e xpression '’y

65: 4, 4: 9 S reduce statement_list . s tatement_list statement
66: 4, 6: 9 S shift IDENTIFIER, lookahead: (

67: 4, 6: 18 S dynamic decision 3

68: 4, 6: 18 S check predicate in line 50, result =0

69: 4, 6: 18 S check predicate in line 51, result =0

70: 4, 7: 18 S shift lookahead: IDENTIFIER

71: 4, 8 20 S shift IDENTIFIER, lookahead:)

72: 4, 8 19 S reduce expression : | DENTIFIER

73: 4, 9. 22 S shift), lookahead: ;

74: 4, 9. 22 S reduce expression : | DENTIFIER '(’ expression ')’
75: 5, 1. 12 S shift ;, lookahead: }

76: 5, 1. 12 S reduce statement : e xpression '’y

77 5, 1: 9 S reduce statement_list . s tatement_list statement
78: 6, 1: 9 S shift }, lookahead: _EOF_

79: 6, 1: 9 S reduce compound_statement ;' { declaration_list statement_list '}
80: 6, 1: 4 S reduce O0_intern : ¢ ompound_statement _EOF_
81: 6, 1: 4 S accept parse started at 1

The trace starts with a heading thaplains the meaning of the different columns: The first
column contains consecui rumbers for the parser actions. The column Positigesdhe source
position of the current lookahead &kwhich consists of a line and a column by default. The for
mat depends on the procedure WritePosition of the module Position[s] which can be redéfeed.
column State contains the (external) number of the current parserBtateolumn Mod gies the
current mode of the parser abbreviated by a letter:

S gandard
T trial

B buffer

R reparse

The column Le contains the recursionue of the internal parsing proceduré blank entry indi-

cates the first astdtion and a number n specifies that n+tooations are acte. The column
Action specifies one of gen possible actions which are indented according to the recursien le
shift, reduce, parse, accept, fail, check, or dynamic. The information following the action in the last
column depends on the kind of the action:

shift Theparser avays works with a lookahead of one &k A shift action consumes one
token by pushing the current lookaheadetolon the parser stack. Awédookahead
token is read by either calling the scanner proceduredietiTor by inspecting a tek
buffer during trial parsing and reparsing. The column Positieesdne source position
of the nev lookahead token and the last column contains the pushen askwell as the
new lookahead token.

reduce Theparser reduces or recognizes a certain grammar rule which follows in the last col-
umn.

parse Arsing in one of the modes standard, trial, or reparse is initiated. The column State
gives the (ternal) number of the start state used for this parse. In case of a trial parse
the line number of the predicate that caused the trial parse uglgaoin the last

Lark 77

column. Incase of a standard parse or reparsing the line where the start symbol is
defined is rgaded as a special kind of predicate and reported in the last coluduli
tionally, the current lookahead token is reported.

accept Arsing in one of the modes standard, trial, or reparse terminates successfully withous
ary errors. Thelast column contains a reference to the parse action that initiated the
parse.

fail Parsing in one of the modes standard, trial, or reparse terminates unsuccessfully (with

errors). Thdast column contains a reference to the parse action that initiated the parse.

dynamic Adynamic decision which depends on the result of a predicate is necessary in order tc
find out hav to continue parsing. The decision may lead to a reduce action for a certain
grammar rule or to a shift action. The numbeegiin the last column refers to the dif-
ferent decision schemes generated.ark.

check Apredicate is checked. The last column contains the line number of the predicate in the
grammar and the result: O or F stand fdsé¢ and 1 or T stand for trué check action
is completely ceered by one trace line in case of semantic predicates or syntactic predi-
cates with a terminal. Heever, syntactic predicates with a nonterminal trigger trial
parsing and then a check action is preceded by a sequence of actions that trace the tri
parsing. This sequence is enclosed either in a parse-accept pair or aipaase-of
actions.

Trial parsing as well as reparsing may be nested to arbitrary dépth.means that corre-
sponding parse-accept pairs and parse-fail pairs may appear nested, too.

If option -b is set then the generated parser memorizes the resulvioluprerial parses and
tries to &oid the unnecessary repetition of same trial parses. If a dynamic action with a nonterminal
predicate is immediately followed by a check action then the parser used a memorized result of
previous trial parse and no parsing actiongehaen performed to obtain this result.

The state of the parser and the lookahead token determine the next action of théngheser
example, the first action (line 2) is a shift of { with a transition to state 3. The transition to state 3
can be concluded from the column State in lineA3reduce action can only taklace when all
symbols of the right-hand side of the rule to be reduced are on top of the parser stack. Symbols a
pushed on the stack in dwcases: A shift action pushes a terminal on the stack and a reduce action
first pops as mansymbols from the stack as there are symbols on the right-hand side of the rule
and then it pushes the nonterminal on the left-hand side of theFarlexample at line 3 one tek
has been traced as shifted: { . The lookaheadrtok IDENTIFIER. This situation characterizes
the beginning of a declaration_list. Accordinglyreduce action is performed at line 3 which recog-
nizes an empty sequence of tokens as a declaration_list by reducing the rule:

declaration_list : .

This reduce action pops zero symbols from the stack because there are zero symbols on the rig|
hand side of the rule. Then it pushes the nonterminal declaration_list on the stacke Kavethe
symbols { and declaration_list on the stack and the token IDENTIFIER is still the current looka-
head token.

10.2. GraphicVisualization

With option -5 a parser with graphic visualization is generated. This parser opens & wimdb
displays the parser stack and offers a set of menue buttons for mouaoactihere are among

Lark 78

others commands for single stepping and the definition of various breakpoints. The help comman
explains all aailable commands. This parser variant can bgaded as a debugging tool with
graphic user interface. With respect to semantic actions, trace, or linking with other modules this
parser behas as ay aher parserCurrently parsers with visualization can be generated for the
language C, onlyFor linking a parser with visualization the public domain package Tcl/Tk 8.4l is
required. Under Unix linking is done with commands like:

cc -L/usr/X11/lib -ltcl8.4 -1tk8.4 -IX11 -Im .../libreuse.a a

See the screenshot on the next page foxample of the visualizer windo The left windav dis-

plays the stack and the right widaurrently displays the item set of the state on top of the stack.
Every stack entry consists of a state number and the grammar symbol that caused the transition
this state.

The following is the online help information describing the meaning of the wiadd the menue
buttons:

The top line contains:

the source position of the current lookahead token,
the current lookahead token,

the next action to be executed.

The left window displays the stack.
The right window displays various information.

The possible actions are:

shift : the current lookahead token is pushed on the stack,
the next token is read and becomes the new lookahead token
reduce : a grammar rule is recognized,

its right-hand side symbols are popped from the stack and
its left-hand side nonterminal symbol is pushed on the stack

error : a syntax error has been detected
accept : parsing terminates (at EOF or by ACCEPT)
fall : parsing terminates (by ABORT)

dynamic decision: a predicate is checked in order to determine the next action

The menu buttons:

step . execute one parser action
run . execute parser actions until a breakpoint is hit
break . define a breakpoint (see below)
show . display the defined breakpoints,
delete a breakpoint by clicking on it with the left mouse button
item : display the set of items for the state on top of the stack
help : display this help information
print : write the current picture of the stack in postscript format
to the file named 'Parser.ps’
exit : exit the program

Definition of breakpoints:

token : stop when a certain token becomes the lookahead token
stack : stop when a certain symbol is on top of the stack
rule : stop when a certain grammar rule is reduced

79

Lark

- 1

} £

18Il uonese|aap 9

- 2z

18Il uonese|aap 9

- 2z

L feul voneseap | c

dayaads uoneneaap o

dojedeoap L

18I Juawae)s 6

EEIEINEN] al

) 02

EEIEINEN] Gl
L. uoTsseadxe), "HITATINIAT ¢ uvorsssuadxe
"HATATINAAQI ¢ =sweuq3jqidil
"HATATINAAQI ¢ =sweuq3jqidil

*¥ITJIINIAQI * uoTrssaadxs i

HIHILKAAI : umssadd=a aonpad

_,__z_u _,E_.E _a_ms _...._E_ _anm _um__..._ _u__....mzh_e uorsod _Eﬂm _m_E _u_uEm _=B_E _==.._ _aEm

Screenshot of the graphic visualization

state

Lark 80

stop when a certain state is on top of the stack

position stop when a certain source position is reached
dynamic : stop when a certain dynamic decision is evaluated
dynamic all: stop when any dynamic decision is evaluated

error stop when a syntax error has been detected
accept stop when parsing terminates without errors

fail stop when parsing terminates with errors

For token, stack, and rule select an item in the right
window by clicking on it with the left mouse button.

11. Usageand Options

NAME

lark — LALR(2) parser generator with backtracking

SYNOPSIS

lark [-options] [-tirectory] [file]

DESCRIPTION

Lark is a parser generator for highly efficient parsers that generates parsers for LALR(2) anc
LR(1) grammars. Morear, backtracking can be used to recognizenelarger grammar
classes such as non-LR(k) grammars. The grammar is read from thediegiagument

or from standard input, if the file argument is missing. Each grammar rule may be associatec
with a semantic action consisting of arbitrary statements written in the target language.
Whenerer a gammar rule is recognized by the generated parser the associated semanti
action is e&ecuted. A mechanism for S-attribution (synthesized attributes) isde that

allows for the communication between the semantic actiéisibutes can be accessed by
symbolic names as well as by the $n notation.

In case of LR conflicts, destion trees are printed that ease the location of the problem.
Ambiguities in the grammar may be sedivby specifying precedence and associativity for
tokens and grammar rules or by the use of semantic and syntactic pred&atésctic

errors are handled completely automatic by the generated parsers including error reporting
error recoery, and error repair The generated parsers are tableiri

The generated parser needs a scammegror handling module, and awemodules from a
library of reusable modules. Errors detected during the analysis of the grammar are reporte
on standard errorDetailed @planations about LR conflicts can be requested with the
options -v or -w While option -v selects thexplanation of all conflicts, option -w restricts

the «planation to implicitly repaired conflicts and dynamically repaired conflicts (using
predicates) and it suppresses the explanation of explicitly repaired conflicts (using prece-
dence and associatly). The explanation is written to a file whose name is the name of the
input file with the suffix ".dbg" or "Parser.dbg" in case of input comes from standard input.

OPTIONS

c
+

generate C source code
generate C++ source code

Qa ® o w3 =

Y
5

Lark 81

generate Ja urce code

generate Modula-2 source code (default)
generate Ada source code

generate Eiffel 3 source code

generate all = -dip (default)

generate header file or definition module
generate implementation part or module
generate main program to be used as tegérdri
generate parser with graphical visualization

-f[prefix

nw N G

UOs < oo bhoc =

=y

generate constant declarations for tokens in header file using prefix (default: t)
generate # line directes

generate lines not longer than 80 characters

report undefined tokens and multiply defined nonterminals as error (default: warning)
uppress reporting of multiply defined nonterminals

appress informations and warnings

suppress elimination of LR(0) reductions

use faster and larger terminal tables (default: slower and smaller)

use faster and larger nonterminal tables (default: slower and smaller)

use tables to decrement stack pointers (default: inline code)

use alternate algorithm for table compression

memorize previous trial parses anaid repetition of same trial parses

explain all LR conflicts in file with suffix .dbg

explain implicitly and dynamically repaired conflicts, only

explain nev conflicts, only - old conflicts are read from file with feuf.cft, current set of
conflicts is written to ne@ version of this file, differences between previous and current runs
are written to file with suffix .dlt

print help information

reduce the number of case labels in switch, case, or inspect statements by mapping so-call
shift-reduce states to reduce states (increases run time a littlet Wiedreases code size,
might be necessary due to compiler restrictions)

-nnumber

N < X -

generate switch or case statements with at most number case labels (might be necessary ©
to compiler restrictions)

print statistics about the generated parser

print a list of terminals and their encoding

print a readable version of the generated automaton (states and items)
print a list of nonterminals and rules

Lark

0 construct an LALR(1) parser (based on an LR(0) automaton) (default)

1 construct an LR(1) parser (based on an LR(1) automaton)

01 construcan LALR(1) parser and extend it locally to LR(1) where necessary
-k2 construcan LALR(2) parser (which uses 2 tokens lookahead) (default: 1)

7 touch output files only if necessary
8 report storage consumption
-Idirectory

specify the directory where lark finds its data files
print advanced help information

explain explicitly repaired conflicts

explain implicitly repaired conflicts

explain LALR(2) repaired conflicts

explain dynamically repaired conflicts

disable generation of comments and rules

0OXs<cCcz

FILES

*.dbg readablexplanation of LR conflicts
*.cft internalrepresentation of LR conflicts
*.dit differences in grammar and conflicts wrt. previous run

if outputis in C:

<Parser>.h headédile for the generated parser
<Parser>.c bodwf the generated parser
<Parser>Dnc bodyof the parser dver (main program)
yySource temporarijle of visualizing parser
yy<Parser>.brk temporarfyle of visualizing parser
yy<Parser>.itm temporarfile of visualizing parser
yy<Parser>.rul temporarfile of visualizing parser
yy<Parser>.sbl temporaifyle of visualizing parser
Pasertcl proceduralefinitions for visualizing parser

if output is in C++:

<Parser>.h headédile for the generated parser
<Parser>.cxx bodwf the generated parser
<Parser>Dnecxx bodyof the parser dver (main program)
yySource temporarijle of visualizing parser
yy<Parser>.brk temporarfyle of visualizing parser
yy<Parser>.itm temporarfile of visualizing parser
yy<Parser>.rul temporarfile of visualizing parser
yy<Parser>.sbl temporaifyle of visualizing parser
Pasertcl procedurelefinitions for visualizing parser

if output is in Jea

<Parser>.jea dass of the generated parser

Lark 83

<Parser>Drv.jaa parser diver (main program)

if output is in Modula-2:

<Parser>.md definitiomodule of the generated parser
<Parser>.mi implementatiomodule of the generated parser
<Parser>Dnmi implementatioormodule of the parser dar

if output is in Ada:

<Parser>.ads packagmterface) of the generated parser
<Parser>.adb packadmdy of the generated parser
<Parser>dnadb packagbody of the parser drmer

if output is in Eiffel:

<Parser>.e classf the generated parser

<Parser>dne clasf the test drier (main program)

<Parser>.txt tablesontrolling the parser (ASCII format)

errors.e clasef error handler

attribute.e supportlass for the description of properties of nonterminals

scanattribte.e supportlass for the description of properties of tokens

position.e supportlass for the representation of source positions

rfile.e supportlass extending the class FILE

rsystem.e suppodass for system specific properties
Acknowledgement

| thank Dr Thomas Herter for the stimulation of the implementation of trial parsing and for man
fruitful discussions.

Lark

Appendix 1: Syntax of the Input Language

RULE

Grammar

Decls

ScannerName

ParserName

Codes

TokenPart

Tokens

Token

Code

Cost

Repr

PrecPart

Precedences

Terminals

Decls RulePart

/* empty */
D ecls ScannerName
D ecls ParserName
D ecls Codes
D ecls TokenPart
D ecls PrecPart
D ecls StartPart

'SCANNER’

" SCANNER'’ Identifier

'PARSER’
" PARSER’ Identifier

'IMPORT’ Action
" EXPORT’ Action
" GLOBAL'’ Action
" LOCAL’ Action
" BEGIN' Action
" CLOSE’ Action

"'TOKEN'’ Tokens

/* empty */

T okens Token Code Cost
T okens Token Code Repr

Identifier
S tring

/* empty */
N umber
" =" Number

/* empty */
," Number
,” Number '}’ String

', String
' String ’,” Number

'PREC’ Precedences

/* empty */
P recedences 'LEFT’

Terminals

P recedences 'RIGHT’ Terminals

P recedences 'NONFE’

* empty */
T erminals Identifier
T erminals String

Terminals

84

StartPart

Nonterminals

RulePart

Productions

Rules

Elements

Identifier

Number

String

Action
UCAction

TargetCode

Attribute

Lark

'START’ Nonterminals

/* empty */

N onterminals Identifier

'RULE’ Productions

Identifier '’ Rules .’

P roductions Identifier ":’ Rules .’

Elements

R ules’|' Elements

/* empty */
E lements Identifier

E lements Identifier '$’ |dentifier
E lements String
E lements String '$’ Identifier
E lements Action
E lements Action '$’ Identifier

E lements UCAction

E lements UCAction '$’ Identifier
E lements 'PREC’ |dentifier
E lements 'PREC’ String

E lements '?’ Action
E lements '?’ Identifier
E lements '?’ String
E lements '?’ ’-’ Action

E lements '?' -’ |dentifier

E lements '?" ’-’ String

Letter

T

| dentifier Letter
| dentifier Digit

| dentifier

Digit
N umber Digit

""" Characters
' " Characters

{’ TargetCode

T TargetCode

/* empty */

mn

y
T

/* lexical grammar */

/* conditional or final action */

/* unconditional or trial action */

T argetCode Character

T argetCode Attribute

'$’ Number
" $' - Number
1 $$i

85

Commentl

Comment2

Characters

Lark

| * % Identifier
'(* Characters '*)’

'I* Characters ™/’

| C haracters Character

86

Lark 87

Appendix 2: Example: Desk Calculator in C (symbolic access)

GLOBAL {

typedef union { tScanAttribute Scan; int value; } tParsAttribute;
int regs [26], base;

}

TOKEN

PREC

RULE

list

stat

expr

number

DIGIT =
LETTER =
!
1;1
1/1
1%1
1\n1

¢
y

LEFT '+

LEFT e

LEFT UNARY

1

2

43
45
42
47
37
10
61
40
41

| I iststat\n’

expr $e

1%1

{ p rintf ("%d\n", $e.value); }

| L ETTER $I '=" expr $e { regs [$l.Scan.value] = $e.value; }

' expr $e)’

e xpr $l '+ expr $r
e xpr $l =" expr $r
e xpr $l " expr $r
e xpr $I'/" expr $r

" - expr $e
L ETTER $I
n umber $n

DIGIT $d

| n umber $n DIGIT $d

|
|
|
|
| e xpr $l'%’ expr $r
|
|
|

{ $ $.value = $e.value; }
{ $ $.value = $l.value + $r.value;
{ $ $.value = $l.value - $r.value;
{ $ $.value = $l.value * $r.value;
{ $ $.value = $l.value / $r.value;
{ $ $.value = $l.value % $r.value; }

{ $ $.value = - $e.value; } PREC UNARY
{ $ $.value = regs [$l.Scan.value]; }

{ $ $.value = $n.value; }

}
}
}
}

{ $ $.value = $d.Scan.value;
base = $d.Scan.value ==07? 8: 10; }
{ $ $.value = base * $n.value + $d.Scan.value; }

Appendix 3: Example: Desk Calculator in Modula-2 (numeric access)

GLOBAL {

FROM StdIO
FROM Scanner

IMPORT Writel, WriteNl;
IMPORT tScanAttribute;
TYPE tParsAttribute = RECORD Scan: tScanAttribute; value: INTEGER; END;

VAR regs: ARRAY [0..25] OF INTEGER,;

VAR base:

}

TOKEN

PREC

RULE

list

stat

expr

number

INTEGER,;

DIGIT =
LETTER =
!
1;1
1/1
1%1
1\n1

¢
y

LEFT '+
LEFT e

LEFT UNARY

1

2

43
45
42
47
37
10
61
40
41

| I iststat\n’

expr

(" expr’)

- expr
L ETTER
| n umber

DIGIT

| n umber DIGIT

e Xxpr '+ expr
e xpr’-’ expr
e Xpr ™ expr
e xpr'l expr
e xpr’'%’ expr

{

{
IF $1.Scan.value = 0 THEN base := 8; ELSE base := 10; END; }

{ $ $.value := base * $1.value + $2.Scan.value; }

1%1

Lark

Writel ($1.value, 0); WriteNl;
| L ETTER '= expr { regs [$1.Scan.value] := $3.value; }

{ $ $.value
{ $ $.value
{ $ $.value
{ $ $.value

= $2.value;

:= $1.value + $3.value;
:= $1.value - $3.value;
:= $1.value * $3.value;

}

}
}
}

{ $ $.value := $1.value DIV $3.value; }

{ $ $.value := $1.value MOD $3.value; }

{ $ $.value
{ $$.value
$$.value

$$.value

= - $2.value;
:=regs [$1.Scan.value];
= $1.value;

= $1.Scan.value;

}

} PREC UNARY

Lark

Appendix 4: Example: Grammar with Predicates and Backtracking

GLOBAL {
#include <ctype.h>
#include "ldents.h"

typedef union { tScanAttribute Scan; } tParsAttribute;

LOCAL { char name [256];}

TOKEN
IDENTIFIER = 1
!(! = 2
!)! = 3
4+ = 4
!;1 = 5
![1 = 6
1]1 — 7
!{! = 8
!}! = 9
RULE
compound_statement : {’ declaration_list statement_list '}’
declaration_list
| d eclaration_list declaration
statement _list
| s tatement_list statement
declaration : ? declaration declaration_specifier declarator ’;’
declaration_specifier TYPEDEFname [printf ("trial action\n");]
{ p rintf ("final action\n"); }
declarator : IDENTIFIER [printf ("trial action\n");]
{ p rintf ("final action\n"); }
| * (declarator’)
| d eclarator [T
| ¢ ompound_statement
statement : expression ’;’
expression : expression '++’
| T YPEDEFname '(’ expression’)’ /* cast */
| I DENTIFIER '(expression)’ [* call */
| I DENTIFIER
TYPEDEFname . IDENTIFIERS$i ?

{ GetString ($i.Scan.ldent, name), isupper (name [0]) }
| | DENTIFIER ? IDENTIFIER

89

Lark

Appendix 5: Example: Tree Construction for MiniLAX in C

GLOBAL {
i nclude "ldents.h"
i nclude "Tree.h"
tTree ninteger, nReal, nBoolean;
typedef union {
tScanAttribute Scan;
tTree Tree;
} t ParsAttribute;

}
BEGIN {
BeginScanner ();
ninteger = minteger 0;
nReal = mReal 0;
nBoolean = mBoolean 0;
}
TOKEN
Ident = 1
IntegerConst = 2
RealConst = 3
PROGRAM =4
b — 5
'DECLARE’ = 6
Y = 7
INTEGER =8
REAL =9
BOOLEAN =10
ARRAY =11
T = 12
= 13
T = 14
OF = 15
PROCEDURE =16
'BEGIN’ = 17
< = 18
+ = 19
! = 20
NOT =21
¢ = 22
b) = 23
FALSE = 24
TRUE = 25
n= = 26
= 27
IF = 28
THEN = 29
ELSE = 30
'END’ = 31
WHILE = 32
DO = 33
READ = 34
WRITE = 35
VAR = 36
= 37
PREC
LEFT <
LEFT '+
LEFT ¥
LEFT NOT
RULE
Prog : PROGRAM Ident ;' 'DECLARE’ Decls 'BEGIN’ Stats 'END’ "’
{ T reeRoot = mMiniLax (mProc (mNoDecl (), $2.Scan.ldent.ldent, $2.Scan.Position,
mNoFormal (), ReverseTree ($5.Tree), ReverseTree ($7.Tree)));
Decls Decl

{ $ 1.Tree->Decl.Next = mNoDecl (); $$.Tree = $1.Tree;
Decls Decls ;" Decl

{ $ 3.Tree->Decl.Next = $1.Tree; $$.Tree = $3.Tree;
Decl : ldent’’ Type

{ $$.Tree = mVar (NoTree, $1.Scan.ldent.ldent, $1.Scan.Position, mRef ($3.Tree));

Decl : PROCEDURE Ident’;’ 'DECLARE’ Decls 'BEGIN’ Stats 'END’

90

Decl

Lark

{ $$.Tree = mProc (NoTree, $2.Scan.ldent.ldent, $2.Scan.Position, mNoFormal (),
ReverseTree ($5.Tree), ReverseTree ($7.Tree));
PROCEDURE Ident (" Formals ')’ ’;’ 'DECLARE’ Decls 'BEGIN’ Stats 'END’
{ $$.Tree = mProc (NoTree, $2.Scan.ldent.ldent, $2.Scan.Position, ReverseTree ($4.Tree),
ReverseTree ($8.Tree), ReverseTree ($10.Tree));

Formals : Formal

{ $ 1.Tree->Formal.Next = mNoFormal (); $$.Tree = $1.Tree;

Formals : Formals ’;’ Formal

Formal
Formal
Type
Type
Type

Type

Stats
Stats
Stat

Stat

Stat
Stat
Stat
Stat

Stat

{ $ 3.Tree->Formal.Next = $1.Tree; $$.Tree = $3.Tree;
Ident "’ Type

{ $ $.Tree = mFormal (NoTree, $1.Scan.ldent.Ident, $1.Scan.Position, mRef ($3.Tree));
VAR Ident "’ Type

{ $ $.Tree = mFormal (NoTree, $2.Scan.ldent.Ident, $2.Scan.Position, mRef (mRef ($4.Tree)));} .

INTEGER
{ $ $.Tree = ninteger;
REAL

. { $$.Tree = nReal,

BOOLEAN
{ $ $.Tree = nBoolean;
ARRAY T IntegerConst '.." IntegerConst ']’ OF Type
{ $$.Tree = mArray ($8.Tree, $3.Scan.IntegerConst.Integer, $5.Scan.IntegerConst.Integer,
$3.Scan.Position);

Stat
{ $ 1.Tree->Stat.Next = mNoStat (); $$.Tree = $1.Tree;
Stats ;" Stat
{ $ 3.Tree->Stat.Next = $1.Tree; $$.Tree = $3.Tree;
Adr =" Expr
{ $ $.Tree = mAssign (NoTree, $1.Tree, $3.Tree, $2.Scan.Position);
Ident

{ $$.Tree = mCall (NoTree, mNoActual ($1.Scan.Position), $1.Scan.ldent.Ident,
$1.Scan.Position);

Ident ’(" Actuals ')’

{ $$.Tree = mCall (NoTree, ReverseTree ($3.Tree), $1.Scan.ldent.Ident, $1.Scan.Position);} .
IF Expr THEN Stats ELSE Stats 'END’

{ $$.Tree = mif (NoTree, $2.Tree, ReverseTree ($4.Tree), ReverseTree ($6.Tree));
WHILE Expr DO Stats 'END’

{ $ $.Tree = mWhile (NoTree, $2.Tree, ReverseTree ($4.Tree));
READ ‘(' Adr)’

{ $ $.Tree = mRead (NoTree, $3.Tree);
WRITE '(Expr ')

{ $ $.Tree = mWrite (NoTree, $3.Tree);

Actuals : Expr

{ $ $.Tree = mActual (mNoActual ($1.Tree->Expr.Pos), $1.Tree);

Actuals : Actuals ', Expr

Expr
Expr
Expr
Expr
Expr
Expr
Expr
Expr
Expr
Expr
Expr
Adr

Adr

{ $ $.Tree = mActual ($1.Tree, $3.Tree);
Expr '<’ Expr

{ $ $.Tree = mBinary ($2.Scan.Position, $1.Tree, $3.Tree, Less);
Expr '+ Expr

{ $ $.Tree = mBinary ($2.Scan.Position, $1.Tree, $3.Tree, Plus);
Expr ™" Expr

{ $ $.Tree = mBinary ($2.Scan.Position, $1.Tree, $3.Tree, Times);
NOT Expr

{ $ $.Tree = mUnary ($1.Scan.Position, $2.Tree, Not);

(" Expr’)

. { $$.Tree = $2.Tree;

IntegerConst

{ $ $.Tree = mIntConst ($1.Scan.Position, $1.Scan.IntegerConst.Integer);
RealConst

{ $ $.Tree = mRealConst ($1.Scan.Position, $1.Scan.RealConst.Real);

FALSE
{ $ $.Tree = mBoolConst ($1.Scan.Position, false);
. TRUE
{ $ $.Tree = mBoolConst ($1.Scan.Position, true);
Ident
{ $ $.Tree = mident ($1.Scan.Position, $1.Scan.ldent.Ident);
: Adr [ExprT
{ $ $.Tree = mindex ($2.Scan.Position, $1.Tree, $3.Tree);
Ident
{ $ $.Tree = mident ($1.Scan.Position, $1.Scan.ldent.Ident);
Adr [Expr T

{ $ $.Tree = mindex ($2.Scan.Position, $1.Tree, $3.Tree);

91

Lark 92

References

[DeP82] FE DeRemer and.TJ. Rennello, Efficient Computation of LALR(1) Look-Ahead Sets,
ACM Trans. Pog. Lang and Systems, 4} (Oct. 1982), 615-649.

[Gro88] J. Grosch, Generators for High-Speed Front-EfddCS 371 (Oct. 1988), 81-92,
Springer Verlag.

[Gro90] J.Grosch, Lalr - a Generator for EfficienaBers,Software—Pactice & Experience
20, 11 (Nov. 1990), 1115-1135.

[GrE90] J.Grosch and H. Emmelmann, Aodl Box for Compiler Constructior,NCS 477
(Oct. 1990), 106-116, Springer Verlag.

[GrV] J. Grosch and B. Vielsack, Theer Generators Lalr and Ell, Cocktail Document No.
8, CoColLab Germany.

[Groa] J.Grosch, Preprocessors, Cocktail Document No. 24, CoCoLab Germany.

[Grob] J.Grosch, Ast - A Generator for Abstract Syntax Trees, Cocktail Document No. 15,
CoColLab Germany.

[Groc] J. Grosch, Ag - An Attribute Evaluator GeneratdZocktail Document No. 16,
CoCoLab Germany.

[Grod] J.Grosch, Reusable Sofare - A Collection of C-Modules, Cocktail Document No. 30,
CoColLab Germany.

[Groe] J.Grosch, Reusable Sofae - A Collection of Modula-Modules, Cocktail Document
No. 4, CoCoLab Germany.

[Joh75] S.C. Johnson, &cc — Yet Another CompiletCompiler Computer Scienceethnical
Report 32, Bell Telephone Laboratories, Murray Hill, NJ, July 1975.

[KrM81] B. B. Kristensen and O. L. Madsen, Methods for Computing LALR(k) Lookahead,
ACM Trans. Pog. Lang and Systems,3 (Jan. 1981), 80-82.

[Mer93] G. H. Merrill, Parsing Non-LR(k) Grammars with a¥c, Software—Pactice &
Experience 238 (Aug. 1993), 829-850.

[Pag77a] D.Pager, The Lane-Tracing Algorithm for Constructing LR(k) Parsers and Ways of
Enhancing its Efficieng Inf. &i. 12 1 (1977), 19-42.

[Pag77b] D.Paer, A Practical General Method for Constructing LR(lar8ersActa Inf 7, 3
(1977), 249-268.

[PCC85] J.C. H. Rark, K. M. Choe and C. H. Chang, A WeAnalysis of LALR Frmalism,
ACM Trans. Pog. Lang and Systems, 4 (Jan. 1985), 159-175.

[R6h76] J.Rohrich, Syntax-Error Rewery in LR-Parsers, innformatik-Fachberichtevol. 1,
H.-J. Schneider and M. Nagl (ed.), Springer Verlag, Berlin, 1976, 175-184.

[R6h80] J.Rohrich, Methods for the Automatic Construction of Error Correctiagd?s Acta
Inf. 13, 2 (1980), 115-139.

[R6h82] J. Roéhrich, Behandlung syntaktischer Fehlémformatik Spektrum 53 (1982),
171-184.

Contents

1.
2.
2.1.
2.2.
2.3.
2.4,
2.5.
2.6.
2.7.
2.8.
2.9.
2.10.

4.1.
4.2.
4.2.1.
4.2.2.
4.2.3.
4.2.4.
4.3.

5.1.
5.2.
5.3.
5.4.

6.1.
6.2.
6.3.
6.4.

7.1.
7.2
7.3.

8.1.

8.1.1.
8.1.2.
8.1.3.

Lark 1

o To [¥ ox 1 o] o OO UUPP PP TPPRRUPRPPRRR
Languag@ESCIIPLIONiiiiiee ettt e e et e e e e e e e e aeeees 2
LeXiCal CONVENTIONS ...ttt e ettt s e e e e e e e e e e e e aeeeeeesnneennnnnn 3
Namegor SCANNEr ANUEPSETouuuuuiiiiiiiiei et e e e e e e e eeeeeeaaeae 4
Target Code SECHONS.....cooi it e e e e e e e e
Specificationf TErMINAISoooiiiiiii e e eeeaeee 5
Precedencand Associativity for OpPeratorS........ccooeeeeieeiiiiiieiiiiiiiiieee e
StANSYMDOIS ... 1.
GrammAaRUIESo e e e et as 7.
SEMANTACTIONS ...ttt e e e e e e e e e e e e e eeeeeeesbane s o]
Attributes: Definition and COMPULAtION............cooiiiiiiiiiiiiieeie e
Syntacti@nd SemantiC PrediCates.............couuvuuuiiiiiiiiiieeeeeeeeeeeeeee s
LALR(1) and LR(1) GrammMarS........ucieeieeeeeeeeeeeeeeeeeeiiiitiiiaasa s s e e e e e e e e e eeeeeeeessnnnnns
AMDIQUOUSGIAMIMAIS ...t e e e e e e e e e e e eeeeeeees 14
LR CONTICES ettt e e e e e e e e e e e e eeeeenenneen 15.
CONFIICIRESOIULION ... 15
EXPICIREPAIN ... 16
IMPICIEREPAIN ... e e e b as 16
DYNAMIAREPAUN .ttt e e e e e e e e e e e e e eeeaebseb e e e e e e e aeeaeaaeeeees 16
L= U = U6 1 o PP PP 17.
EXAMPIES. ... et a e e e e e aaes
Explanationof LR CONFIICEScooiiiiiiii e
DT T (o] o I 1 (=T TP 19
Explicitand IMPpliCit REPAIT..........cooiiiiiiiiiiiie e
D= V0][0 U= o = 1| PSSP 22
Explanatiordf DIffEr@NCESuuuiiiiiiiie e 23
[T o L= U] o TP
RAISING MOUES.... ettt e e e e e e e e e e e e e e e e eeeeeeeennnnns
(Ofe] gl i o)l R =T =T £ o To PR
SEMANTACTIONS ...t e e e e e e e e e e e e e e e rbbsnaa s 28
D= 11 0] o L= PP
IS (] 0 P PUOTTT
=11 0011 = 1 OO UUPPPPPPPUUPUPURTRR 30.
Nonterminal8iNd RUIES..........ooooiiii e
AutomatonStates and SItUALIONS.........iiiiiiie e eeeeeeeeeeeees
INEEIICES ..ttt e e e e e e e e e e e e e eearraaranaa 33.
PP PPURURPPPPRR
RAFSEI INTEIACE ...ttt e e e e e e e e e e e e e eeeeeseenes 34
SCANNENIEITACE ... e 38

EITOINTEITACE ..o e e 39

13

18

19

20

25

26

2

6

30
30

8.1.4.

8.2.

8.2.1.
8.2.2.
8.2.3.
8.2.4.

8.3.

8.3.1.
8.3.2.
8.3.3.
8.3.4.
8.3.5.

8.4.

8.4.1.
8.4.2.
8.4.3.
8.4.4.

8.5.

8.5.1.
8.5.2.
8.5.3.
8.5.4.

8.6.

8.6.1.
8.6.2.
8.6.3.
8.6.4.
8.6.5.

10.
10.1.
10.2.
11.

. TESToT g I 1 SRS 40
O PP 40
RIFSEr INTEIACE . .oovvieii i e e e e e e e e e et e e e eaeaes 40
SCANNENLEITACEcooiiiiii e a4
ErTONNIEITACEeiee e e 45,

. TESToT I 1 PSPPSR 46
N - PPN 47
. TESToT gl [Y= Lo O TPUPPPPIN 47,
SCANNENLEITACEcooiiiii e 51
TRIOMNNG thE RISEI .. 52
ErTONNIEITACE e 54

. TESTST g I 1 SRS 54
Voo 11 = PP 55
RIFSEr INTEIACEovviiii e e e e e e e e e e e ea e e e eaeans 55
SCANNENLEITACEcooiiii e 58
ErTONNIEITACEe e 59

. TESToT I 1 RSP 60
Y £ PSSP 61
RIFSEr INTEIACE . .oovviiii i e e e e e e e e e ea e e eaeens 6l
SCANNENLEITACEcooiiiiii e e 64
ErTONNIEITACEeceie e e 65.

. TESToT I 1 PSPPSR 66
| PR U UPPPPPPPPPPPPRPRTRP 66

RIFSEr INTEIACE ...oovveiii i e e e e e e e et e e eaeens Q7.
SCANNENLEITACEcooiiiii e 70
ErTONNIEITACEieie e 71

. TESToT g I 1 PP 72
SUPPOICIASSES ... e e e e e e e e eaaaaas 12.
EITOIRECOIENY ..ottt e e e e e e a e e enans 12
STU] o] o o] g (o] g T=Ta UL o |1 a o T RUPPPPPPPPPRRY £

Trace Of ParSing ACHONS.coooiiiiiiiieeeeeee et e e e e e e e e eeees 74
Graphid/iSualiZatioNoooiiiiiii e 17

(O IST=To L2 TaTo I @] o] 1 0] o FS OSSR 80
ACKNOWIEAGEMENT ...t e e e e e e e e e e e e aeanaeee 33
Appendix 1: Syntax of the Input Language..........ccoooviiiiiiiiiiiiiiiiiiii e 84
Appendix 2: Example: Desk Calculator in C (symbolic access)..........cccc....... 87
Appendix 3: Example: Desk Calculator in Modula-2 (numeric access)......... 88
Appendix 4: Example: Grammar with Predicates and Backtracking.............. 89
Appendix 5: Example: Tree Construction for MiniLAX in.C............ccccccivvinnnee. 90

RETBIEINCES ... e e 92..

